淡江大學 98 學年度碩士班招生考試試題

系別:化學學系(化學組)

- 1. Define the following terms. (27%)
 - (a) A state function of thermodynamics
 - (b) Chemical potential
 - (c) The law of corresponding states
 - (d) Second -order phase transition
 - (e) Carnot's principle
 - (f) Degree of degeneracy
 - (g) Spin-orbital
 - (h) A fermion and a boson
 - (i) Arrhenius equation
- 2. (a) Describe the Joule experiment for the internal pressure measurement of a non-ideal gas. (10%)
 - (b) Derive the entropy change ΔS in terms of the experimental variables in (a), (5%) Indicate all the symbols used in your answer.
- 3. Answer questions for the following reaction involving ideal gases A and B.

$$A_{(g)} \implies 2B_{(g)}$$

- $A_{(g)} \rightleftharpoons 2B_{(g)}$ (a) With the known relation, $\Delta G^{\circ} = -RT \ln K_{p}^{\circ}$, derive the rate of change of $\ln K_{p}^{\circ}$ with respect to the change of T in terms of ΔH^0 , T, and gas constant. (8%)
- (b) Find K_p^0 at 600 K for the above reaction assuming that ΔH^0 is independent of T. For the reaction at 298 K, $\Delta H^0 = 57.20 \text{ kJ/mol}$ and $\Delta G^0 = 4730 \text{ J/mol}$. (7%)
- 4. (a) Draw the 300°C isotherm of H₂O involving a vapor-liquid phase transition on a pressure versus molar volume (P-V_m) plot. (5%)
 - (b) Indicate the molar volume change for the condensation process on the plot. (2%)
 - (c) Draw the critical temperature isotherm on the plot. (3%)
- 5. (a) In quantum mechanics, the state of a system is defined by the state function Ψ. For an n-particle system, write down the equation governing how Ψ changes with time t. Define all the terms in the equation. (7%)
 - (b) Suppose a one-particle system has the state function $\Psi(x, y, z, t')$ at time t', write the expression of the probability of finding the particle in a infinitesimal region located at point (x_a, y_a, z_a) in space and having edges dx, dy, and dz. (3%)
- 6. Write the expression for dipole moment calculation of a molecule from its equilibrium-geometry electronic wave function ϕ . Define and explain each term in the expression. (8%)
- 7. For a chemical reaction of the form: aA ---> products, the reaction is first order in A.
 - (a) Derive the integrated rate law and the reaction half-life of A. Define all the necessary terms in your derivation. (10%)
 - (b) According to the results in (a), design an experiment to determine the rate constant. (5%)