淡江大學 96 學年度碩士班招生考試試題

系別: 化學學系

科目:物理化學

准帶項目請打「V」

簡單型計算機

本試題共 1 頁

96 年碩士班物理化學考試試題

- 1. Briefly explain the following terms (18%)
 - a. zero point energy
 - b. tunneling effect
 - c. The Born-Oppenheimer approximation for a molecule
 - d. Heisenberg uncertainty principle
 - e. Pauli exclusion principle
 - f. The assumptions of ideal gas
- 2. Write or complete the following equations. (27%)
 - a. Joule-Thomson coefficient, $\mu_{IT} = ?$
 - b. dS (entropy) = ?
 - c. phase rule, f(degree of freedom) = ?
 - d. van der Waals equation of real gas
 - e. relationship between cell's standard potential (\mathcal{E}^{0}) and free energy (G^{o})
 - f. average translational energy per gas molecule, $\langle E_{tr} \rangle = ?$
 - g. Arrhenius equation, the temperature dependence of the rate constant
 - h. The equation given by de Broglie to describe the wave-particle duality
 - i. Boltzmann distribution law
- 3. For the reaction $aA \rightarrow$ product is first-order with r = k[A], show that $[A] = [A]_0 e^{-akt}$. (10%)
- 4. Calculate the magnitude of the (a) orbital and (b) spin angular momentum, the z-component of the (c) orbital and (d) spin angular momentum for a (3, 2, 1, -½) electron in the 24Cr atom. (10%)
- 5. Use LCAO-MO to write down the ground electronic state wave function of H₂ molecule, including the orbital and spin wave functions. (10%)
- 6. Draw a pressure-versus-composition liquid-vapor phase diagram for the mixture of H₂O-ethanol. At 1 atm, the azotropic composition is 96% ethanol by weight and the boiling point is 78.2°C. Boiling point of ethanol is 78.4°C. Can you obtain 100 % ethanol by distillation of a dilute aqueous solution of ethanol? (15%)
- 7. Using Born-Haber cycle to calculate the heat of formation (ΔH_f) of NaCl_(s), where

sublimation of solid Na

 $\Delta H = S$

ionization of gaseous Na atoms

 $\Delta H = IP$

dissociation of Cl2 molecules

 $\Delta H = D/2$

formation of the Cl⁻ ion

 $\Delta H = EA$ (electron affinity)

lattice energy of NaCl, Na⁺_(s) + Cl⁻_(g) → NaCl_(s)

 $\Delta H = U$

 $Na_{(s)} + \frac{1}{2} Cl_{2(g)} \rightarrow NaCl_{(s)}$

 $\Delta H = \Delta H_f$

(10%)