本鐵題雙面印象

淡江大學 96 學年度碩士班招生考試試題

系別:運輸管理學系

科目:作業研究

准帶項目請打「V」

グ 簡單型計算機

本試題共 2. 頁

- 一. 概念題 (Basic Concept): 請回答"真"(T) 或"偽"(F). (10%)
 -) 1. Simplex Method 中, maximization 或 minimization 問題所具備的 seasibility condition 是相同的. (In the simplex method, the seasibility conditions for the maximization and minimization problems are the same.)
- () 2, 藉由刪除多餘之限制式可避免退化解之出現. (Degeneracy can be avoided if redundant constraints can be deleted.)
- () 3. 在線性歸劃問題中若除去 nonbinding constraints 將不影響可行解空間.(Deleting nonbinding constraints in LP will not affect solution space.)
- () 4. 若在 optimal iteration 中顯示 artificial variable 為正值, 則此 LP 仍存有可行解.

 (An LP may have a feasible solution even though an artificial variable appears at a positive level in the optimal iteration.)
- () 5. 運輸問題一定可以表示為平衡模式.
 (A transportation problem can always be represented by a balanced model.)
- 二. 計算題
- 1. Generalized Optimization Problem (15%)

Using Kuhn-Tucker condition to solve the problem and show that the solution is indeed a minimum.

Min
$$z(x_1, x_2) = 4(x_1 - 2)^2 + 3(x_2 - 4)^2$$

s.t. $x_1 + x_2 \ge 5$
 $x_1 \ge 1$

2. Integer Programming (15%)

*x*₂≥2

Solve the following problems by the B&B method, given that the optimal solution for the **original LP** is: Z = 7.31, $X_1 = 1.69$, $X_2 = 1.13$.

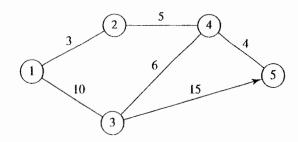
Maximize
$$Z = 3X_1 + 2X_2$$

subject to
$$2X_1 + 5X_2 + X_3 \le 9 \\ 4X_1 + 2X_2 + 2X_3 \le 9$$

 $X_1, X_2 \ge 0$ and integer

ドマーン 淡江大學 96 學年度碩士班招生考試試題

系別:運輸管理學系


科目:作業研究

准帶項目請打「V」
 簡單型計算機
 本試題共 2 頁

3. Shortest Path Problem (20%)

Given the network below:

- (a) Use Floyd's algorithm to calculate shortest path between any two nodes
- (b) Construct LP formulation to determine the shortest path between node 1 to node 5.

4. Primal-Dual Relationships (20%)

The following is the optimal tableau for a maximization LP problem with three (<) constraints and all nonnegative variables. The variables X_3 , X_4 , X_5 are the slacks associated with the three constraints. Determine the objective value in two different ways by using (a) primal objective function and (b) dual objective function.

Basic	\mathbf{X}_1	X_2	X_3	X_4	X_5	Solution
Z	0	0	0	3	2	???
X_3	0	0	1	1	-1	2
X_2	0	1	0	1	0	6
X_1	1	0	0	-1	1	2

5. Dynamic Programming: Dynamic EOQ Inventory Problem (20%)

Suppose that the inventory holding cost is based on the average inventory during the period. Develop the corresponding forward recursive equation of the Dynamic EOQ Inventory Problem for a single goods (單項商品). (Hint: Please draw a conceptual diagram to illustrate this problem.)