淡江大學九十四學年度碩士班招生考試試題

系別:財務金融學系

科目:統 計 學

准帶項目請打「V」 簡單型計算機 本試題共] 頁

1. Assume that you are given the following joint density function,

$$f(x,y) = \begin{cases} 8xy, & 0 \le x \le 1, \ 0 \le y \le x \\ 0, & \text{otherwise} \end{cases}$$

- A. (10%) Please find E(X).
- B. (10%) Please find V(X).
- 2. Let X and Y be random variables, let μ_X (μ_Y) and σ_X^2 (σ_Y^2) be the mean and variance of X (Y), and let σ_{XY} be the covariance between X and Y.
 - A. (10%) Show that $E(Y^2) = \sigma_Y^2 + \mu_Y^2$.
 - B. (10%) Show that $E(XY) = \sigma_{XY} + \mu_X \mu_Y$.
 - C. (15%) Show that $\sigma_{XY}^2 \leq \sigma_X^2 \sigma_Y^2$. [Hint: One possible way to prove this needs to use $V(aX + bY) = a^2 \sigma_X^2 + 2ab\sigma_{XY} + b^2 \sigma_Y^2$.]
- 3. Suppose that you have the following estimated result,

$$\widehat{Gain} = 11.101 + 1.433 \text{ Tuition}$$

where "Gain" is the gain in salary and "Tuition" is the annual tuition, both in thousands of dollars.

A. (10%) What does 1.433 (the coefficient of "Tuition") mean?

Now, suppose salary gain is measured in actual dollars (Gain*) and tuition is defined in hundreds of dollars (Tuition*).

- B. (15%) Please show how to obtain the values of $\hat{\alpha}$ and $\hat{\beta}$ in the following regression. $\widehat{\text{Gain}^*} = \hat{\alpha} + \hat{\beta} \text{Tuition}^*$
- 4. The density for each observation y_i , $i = 1, 2, \dots, n$ is,

$$f(y_i|\theta) = \frac{e^{-\theta}\theta^{y_i}}{y_i!}$$

- A. (10%) Write down the log likelihood function.
- B. (10%) Consider a random sample 5, 0, 1, 1, 0, 3, 2, 3, 4, 1. Please use this data set to obtain the maximum likelihood estimate of θ .