系別:經濟學系

科目:統 計 學

118-1

准帶工	頁目請打「V」	
	簡單型計算機	
本試題共	2頁,5	 大題

1. Consider the simple regression model $y_i = \alpha + \beta x_i^* + u_i$.

In practice, we measure x_i^* by x_i such that

- (1) $x_i = x_i^* + 5$
- (2) $x_i = 3x_i^*$
- (3) $x_i = x_i^* + \varepsilon_i$, where ε_i is a purely random term with the usual properties.

What will be the effect of these measurement errors on estimates of true α and β ?

2. Consider the model:

$$y_i = \alpha + \beta x_i + u_i$$

where $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \varepsilon_t$, that is, the error term follows an AR(2) scheme, and where ε_t is a white noise error term.

- (1) Will u_t still satisfy classical assumptions such that OLS estimators are BLUE. Please justify your answers.
- (2) Outline the steps you would take to estimate the model taking into account the second-order autocorrelation.
- 3. Considering the following models:

$$\ln y_i^* = \alpha_1 + \alpha_2 \ln x_i^* + u_i^*$$

$$\ln y_i = \alpha_1 + \alpha_2 \ln x_i + u_i$$

where $y_i^* = w_1 y_i$ and $x_i^* = w_2 x_i$, the $w^i s$ being constants.

- (1) Establish the relationships between the two sets of regression coefficients and their standard errors.
- (2) Is R^2 different between the two models? Why?

本試題雙面印

淡江大學 97 學年度碩士班招生考試試題

118-2

118-2

系別:經濟學系

科目:統 計 學

- 4. Suppose y_i is distributed i.i.d. $N(0, \sigma^2)$ for i = 1, 2, ..., n.
 - (1) Show that $E(\frac{y_i^2}{\sigma^2}) = 1$.
 - (2) Show that $w = \frac{1}{\sigma^2} \sum_{i=1}^n y_i^2$ is distributed x_n^2 .
 - (3) Show that E(w) = n.
 - (4) Show that $v = \frac{y_1}{\sqrt{\sum_{i=1}^n y_i^2}}$ is distributed t_{n-1} .
- 5. Let $y_1, y_2, ..., y_n$ be i.i.d. draws from a distribution with mean μ . A test of $H_0: \mu = 5$ versus $H_1: \mu \neq 5$ using the usual t-statistic yields a p-value of 0.03.
 - (1) Does the 95% confidence interval contain $\mu = 5$? Explain.
 - (2) Can you determine if $\mu = 6$ is contained in the 95% confidence interval Explain.