淡江大學 96 學年度碩士班招生考試試題

系別:經濟學系

I.

科目:統 計 學

准帶項目請打「V」						
V	簡單型計算機					
	本試題共 2	頁				

Problems (1) \sim (12), 7 points each. (13) \sim (14), 8 points each.

P. 1

A. Given the following table representing the joint PDF (Probability Density Function) of the discrete random variables X and Y.

		X				
		-2	0	2	3	
v	3	0.27	0.08	0.16	0	
•	6	0	0.04	0.10	0.35	

- (1) Estimate E(2X-3Y+5). (Note: The symbol E here represents the expectation operator).
- (2) Estimate the coefficient of correlation for the above data.
- (3) Compute Var(Y|X=0) for the above data (Note: The symbol Var here represents the variance operator).
- B. Consider an experiment where a fair coin is tossed 4 times. The sample space for this experiment consists of 16 possible outcomes, each outcome has a probability 1/16 of occurring on any given trial of the experiment...

We now define two discrete random variables as follows:

X = number of tails obtained on the first 3 tosses of the coin

Y = number of tails obtained on all 4 tosses the coin

For example, an outcome (TTHH) in the sample space represents X = 2 and Y = 2, where T stands for "tails" and H for "heads".

(4) Establish a table that gives the joint PDF of X and Y using the following format

Y

X

- (5) Find the conditional probability distribution for Y given \boldsymbol{X} .
- (6) Find the variance-covariance matrix of X and Y.
- (7) Compute Var(X|Y=2).

1

▼注意背面尚有試題▶

本試題雙面印製

淡江大學 96 學年度碩士班招生考試試題

系別:經濟學系

科目:統 計 學

准帶項目請打「V」
V 簡單型計算機
本試題共 2 頁

(8) Let Pr(|X - Y| = 1) be the probability that X and Y differ by exactly 1. Find Pr(|X - Y| = 1) + Pr(|X - Y| = 2). 1, 2

11.

C. If we assume that consumption expenditure (Y,\$) is linearly related to income(\$) and wealth(\$), we obtained the following STATA output of a least squares regression

Source	I SS	df	MS		Number of obs	= (b)
	+				$\mathbf{F}(2,7)$	= 92.40
Model	8565.55407	2 4282.	77704		Prob > F	= 0.0000
Residual	324.445926	7 46.3	349418		R-squared	= 0.9635
	+				Adj R-squared	= (c)
Total.	8890	(a) 987.7	77778		Root MSE	= 6.808
** ** ** ** ** ** **						
Y		4	-		[95% Conf.	Intervall
	+					
income	.9415373	(d)	1.14	0.290	-1.004308	2.887383
wealth	(e)	.0806645	-0.53	0.615	2331757	.1483067
_cons	1 24,77473	6.7525	(£)	0.008	8.807609	40.74186

- (9) Fill in the missing spaces (a) + (f) in the STATA output.
- (10) State the economic interpretation of the estimated partial slope coefficients. Are the sign of the coefficients what you would expect from economic theory?
- (11) Do you suspect that there is multicollinearity in the data? Why?
- (12) Test at the 1% level of significance the hypothesis that income and wealth jointly have no influence on consumption expenditure.

D. (13) Let
$$Y_1, \ldots, Y_n$$
 be random variables such that $E(Y_i) = 1 + \beta x_i$,

 $i=1,\ldots,n$. Given observations $(x_1,y_1),\ldots,(x_n,y_n)$, find the

least squares estimate for β .

(14) Suppose that we have specified and estimated the regression model $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + \varepsilon_i$ Let (a, b, c) be the least squares estimates and let

$$\hat{y}_i = a + bx_{2i} + cx_{3i}$$

What will \hat{y}_i be, if assume now that $x_{3i} = 1 + 2x_{2i}$?