淡江大學 97 學年度碩士班招生考試試題

121

系別:統計學系

科目:基礎數學(含微積分、線性代數)

准帶項目請打「V 本試題共 大題

下列所有考題皆為計算或證明題、皆須附帶寫出計算或證明過程、否則不予計分。

- 1. Determine convergence or divergence of the following two series (State briefly the theorems or methods of test you employ in your work)
 - a) $\sum_{k=1}^{\infty} \frac{\sin k}{k^2}$
- b) $\sum_{n=1}^{\infty} (-1)^n a_n \left(\sharp + a_n = \int_2^{2+2/n} \frac{1}{x} dx \right)$ (5%)
- 2. Evaluate the given limits, if possible

a)
$$\lim_{x\to 0} \frac{x - \int_0^x \cos t \ dt}{x - \int_0^x e^{t^2} dt}$$
 (6%) b) $\lim_{n\to \infty} (\frac{1}{\sqrt{n}\sqrt{n+1}} + \frac{1}{\sqrt{n}\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n}\sqrt{n+n}})$ (10%)

- 3. Use Mean Value Theorem to prove that: $\frac{x-1}{x} < \ln x < x-1$, whenever x > 1. (8%)
- 4. Prove that the function $f(x) = x^3 + 3x + 1$ has exactly one real root. (7%)
- 5. a) Write the Maclaurin series of the function $f(x) = e^x$ and its radius of convergence. (5%) b) Propose a strategy to approximate the definite integral $\int_0^1 e^{x^2} dx$ (just state the approximation strategy, don't evaluate it). (5%)
- 6. Let $A = [a_{ij}]_{n \times n}$, $a_{ij} \in R$ be an $n \times n$ matrix, prove that: the system $A_{n \times n} \cdot X_{n \times 1} = 0_{n \times 1}$ has non-trivial solution (i.e. the system has solution X that is not zero vector) \Leftrightarrow (if and only if) $\det(A) = 0$. (10%)
- 7. Let $A = \begin{pmatrix} 2 & t^2 & 5 \\ 0 & t+1 & t \\ 0 & t+5 & 2t+5 \end{pmatrix}$, $t \in \mathbb{R}$. a) For t = 0, use Cramer's rule to calculate A^{-1} . (8%) b) For all

 $t \in R$, prove that A^{-1} always exists. (5%)

8. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation, where for 3×1 vector X, $T(X) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} X$. Find the

bases respectively for a) the kernel (null space) of T and b) the image of T. (10%)

9. Let $A = \begin{pmatrix} 3/5 & 4/5 \\ 2/5 & 1/5 \end{pmatrix}$. a) Find the eigenvalues of A and their corresponding eigenvectors (6%); b) prove that when $n \in \mathbb{N}$, $A^n \to \begin{pmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{pmatrix}$, as $n \to \infty$ (where $A^2 = A \times A$, and $A^n = A^{n-1} \times A$ for