淡江大學九十四學年度碩士班招生考試試題

系別:統計學系

科目:基礎數學(含微積分、線性代數)

准帶項目請打「V」	
簡單型計算機	
本試題共	頁

1. (12 pts) Find the following limits:

(a)
$$\lim_{n\to\infty} \left(1+\frac{2}{n}\right)^n$$

(b)
$$\lim_{x \to \infty} x \log \left(\frac{x+1}{x-1} \right)$$

(a)
$$\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n$$
 (b) $\lim_{x \to \infty} x \log \left(\frac{x+1}{x-1} \right)$ (c) $\lim_{x \to 1} \frac{x + x^2 + \dots + x^n - n}{x-1}$

2. (8 pts) Find the derivatives of the following functions:

(a)
$$f(x) = \frac{e^{3x}}{x+1}$$

(b) Let
$$f\left(\frac{x-1}{x+1}\right) = x$$
. Find $f'(0)$.

3. (14 pts) Consider the gamma function $\Gamma(a) = \int_{a}^{\infty} x^{a-1} e^{-x} dx$. Show that

(a)
$$\Gamma(a+1) = a\Gamma(a)$$

(b)
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

4. (16 pts) Find the following double integral:

(a)
$$\iint_B xy \ dxdy$$
, where $B = \{(x,y) \mid x^2 + y^2 \le 1, \ x \ge 0, \ y \ge 0\}$.

(b)
$$\int \int_A e^{-y} dy dx$$
, where $A = \{(x, y) \mid 0 < x < y < \infty, x + y > 1\}$

5. (10 pts) Let A and B be $n \times n$ matrices, and let C be a nonsingular $n \times n$ matrix. Suppose that $C^{-1}AC = B$.

- (a) Prove that det(A) = det(B).
- (b) Show that A and B have the same eigenvalues.

6. (10 pts) If the $n \times n$ symmetric matrix A has the property $x^T A x > 0$ for all possible $n \times 1$ vector x except x = 0, then A is said to be a positive definite matrix.

(a) Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, where $|x_1| + |x_2| > 0$. Show that A is a positive definite matrix.

(b) Let P be a nonsingular matrix and A be a positive definite matrix. Show that P^TAP is positive definite.

7. (20 pts) Let
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A and the corresponding eigenvectors.
- (b) Find the eigenvalues of A^5 .
- (c) Show that A is diagonalizable.
- (d) Compute A^5 .

8. (10 pts) Consider the following linear system Ax = b given by

$$x_1 - x_2 = 4 3x_1 + 2x_2 = 1$$

$$3x_1 + 2x_2 = 1$$

$$-2x_1 + 4x_2 = 3$$

Find the orthogonal projection of b on the column space of A.