淡江大學九十學年度碩士班招生考試試題

系別:統計學系

科目:機 率 論

准帶項目請打「〇」否則打「× 」	
計算機	字典
0	×

本試題共 2 頁

- 1. Let C_1 and C_2 be independent events with $P(C_1) = 0.6$ and $P(C_2) = 0.3$. Compute (a) $P(C_1 \cup C_2)$ (b) $P(C_1 \cap C_2)$ (c) $P(C_1^* \cap C_2^*)$ (d) $P(C_1 \cup C_2^*)$, where A^* is called the complement of A. (20%)
- 2. Let X be a random variable such that $\Pr(X \le 0) = 0$ and let $\mu = \mathbb{E}(X)$ exist. Show that $\Pr(X \ge 2\mu) \le \frac{1}{2}$. (10%)
- 3. Let X and Y have the joint probability density function (p.d.f.) f(x,y) = 6(1-x-y), 0 < x, 0 < y, x+y < 1, and zero elsewhere. Compute Pr(2X + 3Y < 1) and $E(XY + 2X^2)$. (10%)
- 4. Let X be a random variable such that $E(X^{2m}) = \frac{(2m)!}{(2^m m!)}$, m = 1, 2, 3, ... and $E(X^{2m-1}) = 0$, m = 1, 2, 3, ... Find the moment generating function (m.g.f.) and the p.d.f. of X. (20%)
- 5. If the independent variables X_1 and X_2 have means μ_1 , μ_2 and variances σ_1^2, σ_2^2 , respectively. Find the mean and variance of the product $Y = X_1 X_2$. (10%)
- 6. Let X_1, X_2, \dots, X_n be a random sample from a distribution with mean mu and variance σ^2 . Consider the second differences

$$Z_j = X_{j+2} - 2X_{j+1} + X_j,$$
 $j = 1, 2, \dots, n-2.$

Compute the variance of the average, $\sum_{j=1}^{n-2} \frac{Z_j}{n-2}$, of the second differences. (10%)

淡江大學九十學年度碩士班招生考試試題

系別:統計學系

科目:機 率 論

准帶項目請打「〇」否則打「× 」	
計算機	字典
((X

14 14 11/14 14

- 7. Let Y_n denote the *n*th order statistic of a random sample of size *n* from a uniform distribution on the interval $(0,\theta)$. Prove that $Z_n = \sqrt{Y_n}$ converges in probability to $\sqrt{\theta}$. (10%)
- 8. Let Y_1, Y_2, \dots, Y_n be the order statistics of a sample of size n from an exponential distribution with parameter $\mu = 1$. Find that $\mathbb{E}[\prod_{i=1}^{n} (n-i+1)(Y_j Y_{j-1})]$, where $Y_0 = 0$. (10%)