淡江大學八十八學平度碩士雖招生考試試題

系别:統計學系 科目:機率論

本試題共 乙 頁

- (1) A point is chosen at random from the triangle whose vertices are at (0,0), (0,2), and (2,0); X is the sum of the two coordinates of the point.
 - a. Find the cumulative distribution function of X.
 - b. Find the probability density function of X. (5 %)
 - c. Find $P(X \le 1)$. (5 %)
- (2) Let X_1, X_2, \dots, X_9 be independent random variables, all having the Poisson distribution with parameter λ .
 - a. What is the probability that $X_1 + X_2 + \cdots + X_9 = 0$?
 - b. What is the probability that $X_1 + X_2 + \cdots + X_9 = 1$? (5%)
 - c. What is the probability that $X_1 + X_2 + \cdots + X_9 = 2?$ (5 %)
 - d. From the answers to parts a, b, c, guess the distribution of $X_1 + X_2 +$ $\cdots + X_9$. (5%)
- (3) a. Let μ_k be the kth moment $E(X^k)$ of X. Show that $\mu_{2n} \geq (\mu_n)^2$ for any positive integer n. (10%)
 - b. The possible values of X are the positive integers, and $P(X=k)=kp^2q^{k-1}$ for $k = 1, 2, 3, \cdots$ (As always, p and q are positive constants and p + q = 1.) Find E(X). (5%)
- (4) a. Let X and Y be independent, each with the same distribution, whose moment generating function is $m(s) = \sqrt{1/(1-4s)}$ (for $s < \frac{1}{4}$). What is the name of the distribution of X + Y? (5%)
 - b. If Z is a unit normal random variable and if Y is defined by Y = A + $BZ + CZ^2$, show that $\rho(Y, Z) = \frac{B}{\sqrt{B^2 + 2C^2}}$. (5%)

淡江大學八十八學平度碩士班招生考試試題

系别:統計學系

科目:機率論 本試題共 乙 頁

- (5) If X_1, X_2, \dots, X_n are independent and identically distributed random variables having uniform distributions over (0,1), find
 - a. $E[max(X_1, \dots, X_n)];$ (5%)
 - b. $E[min(X_1, \dots, X_n)].$ (5 %)
- (6) a. If Y is uniformly distributed over (0,5) what is the probability that the roots of the equation $4x^2 + 4xY + Y + 2 = 0$ are both real? (5 %) b. If X is a Poisson random variable with mean λ , show that for $i < \lambda$, $P(X \le \lambda) \le \frac{e^{-\lambda}(e\lambda)^i}{i!} \cdot (5\%),$
 - c. If E[X] < 0 and $\theta \neq 0$ is such that $E[e^{\theta X}] = 1$, show that $\theta > 0$. (5%)
- (7) An engineering system consisting of n components is said to be a k-out-of-nsystem ($k \leq n$) if the system functions if and only if at least k of the n components function. Suppose that all components function independently of each other.
 - a. If the ith component functions with probability p_i , i = 1, 2, 3, 4, 5, compute the probability that a 3-out-of-5 system functions. (5%)
 - b. Repeat part a. for a 2-out-of-4 system. (5%)
 - c. Repeat for a k-out-of-n system when all the p_i equal p (that is, $p_i = p$, i = p

 $1, 2, 3, \dots, n$). (5%)