淡江大學九十學年度碩士班招生考試試題

系別:產業經濟學系

科目:微 積 分

准帶項目請打「〇」否則打「× 」	
計算機	字典
*	Х

本試題共 2 頁

- 1. Given the function $y = f(x) = \frac{2x^2}{x^2 + 1}$. Please check if this function is continuous in real number $x \in (-\infty, \infty)$. (10%)
- 2. Given demand function $Q = \frac{a}{P^n}$, where a and n are positive constants. Please find the point elasticity of demand. (10%)
- 3. (1) Given the equation $F(x,y) = x^3 2x^2y + 3xy^2 22 = 0$, is an implicit function y = f(x) defined around (y=3, x=1)? If yes, find $\frac{dy}{dx}$ and evaluate it at point (y=3, x=1). (10%)
 - (2)Let the national-income model be

$$Y - C(Y) - I(i) - G_0 = 0$$
 (0

$$kY + L(i) - M_0^s = 0$$
 (k is a positive constant : L'<0)

where Y is income, C is consumption, I is investment, G_0 is government expenditure, L is money demand and M_0^s is money supply. Please analyze the comparative statics of the model when money supply changes, i.e. find out $\frac{dY^*}{dM_0^s}$ and analyze it. (15%)

4. Given $y = (x-2)^6 + 5$. Find the stationary value and determine the exact nature of this stationary value (i.e. Is it relative maximum or relative minimum?) (10%)

淡江大學九十學年度碩士班招生考試試題

系別:產業經濟學系

科目:微 積 分

准帶項目請打「〇」否則打「x 」	
計算機	字典
X	X

本試題共 2 頁

5. Define a differentiable function $f(x) = f(x_1, x_2,, x_n)$ is concave (convex) iff, for any given point $u = (u_1, u_2,, u_n)$ and any other point $u = (u_1, u_2,, u_n)$ in the domain, $f(v) \le (\ge) f(u) + \sum_{j=1}^n f_j(u)(v_j - u_j)$

where $f_j(u) = \frac{\partial f}{\partial x_j}$ is evaluated at $u = (u_1, u_2, ..., u_n)$. Please use above definition to check if z = -xy is concave, convex, strictly concave, strictly convex or neither. (10%)

- 6. Find (1) $\int x \ln x dx$ (10%) (2) $\int_{2}^{4} (e^{2x} + e^{x}) dx$ (10%)
- 7. Given $\frac{dy}{dt} + 10y = 15$; y(0)=0, find the general solution y_c and the particular solution y_p . (15%)