淡江大學八十七學年度碩士班入學考試試題

系别: 電機工程學系 科目: 計算機概論(含計算機組織)

本試題共 2 頁

- 1. (20 points) Explain the following terminologies:
 - (1) Hash
 - (2) Cycle Stealing
 - (3) MIN (Multistage interconnection networks)
 - (4) ATM (Asynchronous Transfer Mode) Network
 - (5) FPGA
- 2. (10 points) Most computers use interleaved memory. Describe what this means and give an illustrated example. How does interleaving strategy affect memory system throughput and latency?
- 3. (10 points) Write a recursive function for computing the binomial coefficient C(n,m) as defined as follows:

$$C(n,m) = (n!) / (m! \times (n-m)!)$$
 or $C(n,m) = C(n-1, m) + C(n-1, m-1)$
where $C(n,0) = C(n,n) = 1$.

- 4. (10 points) Design a 3-bit odd parity generator (the inputs are a,b,c and the output is P) and a 4-bit odd parity checker. (The inputs are a,b,c,P and the output is C. When error is detected, C=1; otherwise C=0.)
- 5. (10 points) From the architecture point of view, what techniques can be used to make a computer run faster? (for example, computer with cache memory will run faster than the one without cache does) List as many as you can explanation.
- 6. (10 points) To provide cache consistency in computer, the data cache supports a protocol known as MESI (Modified/Exclusive/Shared/Invalid) protocol. Describe what is the write once policy in the MESI protocol.
- (10 points) Give reasons that the page size in a virtual memory system should be neither very small nor very large.

淡江大學八十七學年度碩士班入學考試試題

系别: 電機工程學系 科目: 計算機概論(含計算機組織)

本試題共 2 頁

8. (10 points)

- (a) Please use transmission gates and inverters directly to implement an 4-to-1 multiplexer.
- (b) Use transmission gates and inverters to implement an 8-to-1 multiplexer which must consist of 4-to-1 and 2-to-1 multiplexers.
- 9. (10 points) To design a finite state machine we can follow the following steps:
 - (A) Understand the problem.
 - (B) Obtain an abstract representation of the FSM (such as draw the state diagram or ASM chart to make the state table).
 - (C) Perform state minimization.
 - (D) Perform state assignment.
 - (E) Choose flip-flop types for implementing the FSM's state.
 - (F) Implement the finite state machine.

Now follow the steps as mentioned to design and implement a code converter.

The code converter can be specified as the following state tables.

abcd	a'b'c'd'
0000	0110
0001	0111
0010	1000 .
0011	1001
0100	1010
0101	1011
0110	1100
0111	1101
1000	1110
1001	1111
	l

Use JK flip-flops to implement this code converter.