淡江大學 95 學年度碩士班招生考試試題

系別: 電機工程學系控制晶片與系統組

科目:控制系統

電機工程學系機器人工程碩士班

準帶項目請打「V」			
V	簡易型計	箅	機
本試題共 1 頁			

- 1. Consider the electrical circuit in Figure 1:
 - (1) Find the transfer function from the input voltage v(t) to the current $i_R(t)$ through the resistor. (10%)
 - (2) Find the condition involving the component values of the resistor $\,R$, the inductor $\,L$, and the capacitor $\,C\,$ such that the electrical circuit is underdamped. (10%)
 - (3) Suppose that $R = 1000\Omega$. Find the component values of the inductor L and the capacitor C such that the poles of the electrical circuit will be located at $-5000 \pm j$. (10%)

Figure 1

Figure 2

- 2. Consider a system represented by the following differential equation:
 - $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = \frac{du}{dt}$ where u and y denote the input and output, respectively.
 - (1) Find a state space representation for the system. (10%)
 - (2) Assume $u(t) = \sin(t)$ and zero initial condition (i.e., $y(0) = \frac{dy}{dt}(0) = 0$), find the output y(t).(20%)
 - Consider the unity feedback system in Figure 2 where $G(s) = \frac{K}{(s+a)(s+b)}$. Find K, a, and b to meet the following requirements: the steady-state output value for a unit step input equals 0.1; settling time = 0.8 second; natural frequency= $\sqrt{10}$. (20%)
 - 4. Consider the unity feedback system in Figure 2 where $G(s) = \frac{K(s+20)}{s(s+2)(s+3)}$
 - (1) Find the range of K to make the feedback system stable. (10%)
 - (2) Find the frequency of oscillation when K is set to the value that makes the feedback system oscillate. (10%)