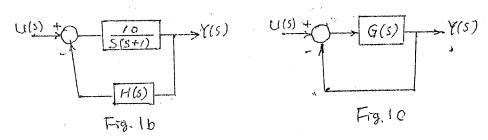
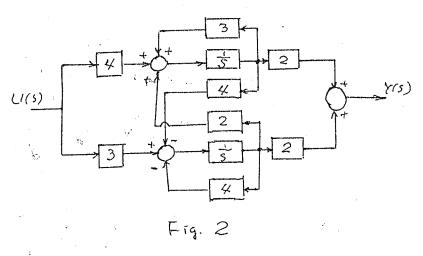

淡江大學八十七學年度碩士班入學考試試題

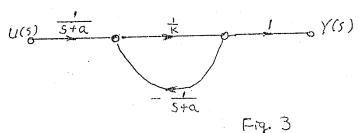

系别: 電機工程學系

科目: 控制系統

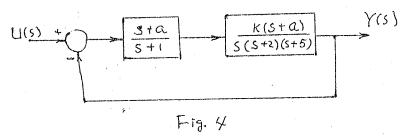

本試題共 1/2 頁

1. Block diagram of a system is shown in Fig. 1a. Represent the system in the form given in Fig. 1b and Fig. 1c. Determine G(s) and H(s).(20%)

- 2. Consider the system shown in Fig. 2. (20%)
 - a) Obtain the state equation and the output equation in matrix form.
 - b) Determine the transfer function of the system from the related matrices obtained in a).
 - c) Draw the signal flow graph of the system.
 - d) Obtain the transfer function by using Mason's equation.


淡江大學八十七學年度碩士班入學考試試題

系别: 電機工程學系


科目: 控制系統

本試題共 2/2 頁

- 3. From the signal flow graph shown in Fog. 3. (20%)
 - a) Determine the unit impulse, the unit step and zero-input responses.
 - b) Assume that the step response has an initial magnitude of 1/4 and a time constant of 5 seconds, find a and k actually used.

4. The disk storage data head positioning system is shown in Fig. 4, k and a are parameters of the system. Determine the range of k and a for which the system is stable. (20%)

5. Consider the linear process that has transfer function (20%)

$$\frac{Y(s)}{U(s)} = \frac{100}{s(s+5)}$$

- a) Describe the system in state space re[resentation.
- b) Design a state feedback control given by

u = r - GX, $G = [g_1 \ g_2]$

with eigenvalue of the closed-loop system located at $\lambda = -7.07 \pm j7.07$, the natural undamped frequency is 10 rad/sec and the corresponding damping ratio is 0.707.