系別:電機工程學系

科目:工程數學

1. Linear Algebra

True or False. If you think the statement is true, mark "T"; if you think the statement is false, mark "F". You don't need to write down your reasons.

- (a) (5%) Every real 3×3 matrix having $\lambda = 1 + i$ as an eigenvalue is diagonalizable over the complex numbers. (Note: $i = \sqrt{-1}$)
- (b) (5%) If matrix A is similar to matrix B, then rank(A) = rank(B).
- (c) (5%) If A is an $m \times n$ matrix having orthonormal columns, then $\det(AA^T) = \det(A^TA)$.
- (d) (5%) If A is a symmetric matrix such that $A^5 = 0$, then A = 0.
- (e) (5%) If A and B are 2×2 matrices with the same trace and the same determinant, then A and B have the same eignevalues.

2. Linear Algebra

Suppose the singular value decomposition of a matrix A is $A = U\Sigma V^T$ where

- (a) (5%) Find the eigenvalues of $A^T A$.
- (b) (5%) Find a basis for the nullspace of Λ .
- (c) (5%) Find a basis for the column space of A.

3. Complex Variables

- (a) (10%) Find the residue at z = 0 of $z^{-3} \csc(z^2)$.
- (b) (10%) Use residual theorem to compute the integral $\int_0^\infty \frac{1}{x^4 + a^4} dx$, a > 0.

4. Differential Equations

Consider a dynamical system described by the following set of two first-order differential equations

$$\begin{bmatrix} \frac{dx_1(t)}{dt} \\ \frac{dx_2(t)}{dt} \end{bmatrix} = \begin{bmatrix} 1 & 9 \\ -1 & -5 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

- (a) (10%) Use eigenvalue/eigenvector concept to find $x_1(t)$ and $x_2(t)$ for $t \ge 0$.
- (b) (10%) Write down the equivalent second-order differential equation and the initial conditions in terms of $x_1(t)$ for the dynamical system. Use "Laplace transform" to solve the equivalent second-order differential equation and determine $x_1(t)$ and $x_2(t)$ for $t \ge 0$.

5. Fourier Series

- (a) (10%) Find the Fourier series of $|\sin(x/2)|$ on $[0, 2\pi]$.
- (b) (10%) Use the result in (a) to find $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2-1}$.