淡江大學九十二學年度碩士班招生考試試題

系別:資訊工程學系

科目: 邏輯導論與機率論

准带习	i目請打「○」否则打「× 」
	簡單型計算機
	X

*试题类 1

- 1. (T or F, if "F" give your reason to get full credits.) (15 %)
 - (a) $(p\rightarrow q)\rightarrow r \Leftrightarrow p\rightarrow (q\rightarrow r)$.
 - (b) $\forall m \exists n (n > 2^m), m, n \in \{0, 1, 2, 3, ...\}.$
 - (c) $\exists n \ \forall m \ (n > 2^m), m, n \in \{0, 1, 2, 3, ...\}.$
- 2. Write the negation of $\exists x \forall y \exists z [(z>y) \rightarrow (z < x^2)]$ without using the connective \neg . (10%)
- 3. Answer the following: (5 + 20 %)
 - (a) For n=3: let $X_3 = \{1, 2, 3\}$. Now consider the sum

$$s_3 = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3} = \sum_{A \subseteq X_A} \frac{1}{P_A}$$
, where $A \neq \emptyset$, and

 P_A denotes the product of all elements in a nonempty subset A of X_3 . Note that the sum is taken over all the nonempty subsets of X_3 . Evaluate this sum S_3 .

(b) Conjecture the general result of S_n for $n \ge 1$. Prove your conjecture by mathematical induction.

(hint: write and evaluate S_2 and S_4 to find the relations among S_k and S_{k+1} .)

4. If the probability table for events A, B, C, D, E is given in the follow, where {A, B} and {C. D, E} are partitions of the sample space respectively. If we know A & D are independent and A, C are disjoint, and P[A∩D] = 1/12, P[A] =1/4, P[C|B] = 1/8, find the values for ⊕② ③. Show all your work to get full credits. (15%)

P[+]	С	D	Е
A		½ 12	0
В	Θ		3

5. Random variables X & Y have the joint pmf (probability mass function)

$$P_{x,r} = \begin{cases} 1/2_1 & x = 0,1,2,3,4,5; y = 0,1,..., x, \\ 0 & otherwise. \end{cases}$$

Find the marginal pmf of X and Y respectively, also find the covariance Cov[X,Y]. (20%)

6. Let X and Y be independent continuous random variables and uniformly distributed over (0, 1). Find the density of X+Y. (15%)