淡江大學九十一學年度碩士班招生考試試題

系別:資訊工程學系

科目: 邏輯導論與機率論

97-1

准帶項目請打「〇	」否則打「×」
計算機	字典
×	X

本試題共 Q 頁 P.1

Part 1

- 1. Define the two operators NAND (not AND) and NOR (not OR) as follows
 - α NAND $\beta \equiv \neg(\alpha \land \beta)$
 - $\alpha \text{ NOR } \beta \equiv \neg (\alpha \vee \beta)$

Obtain the truth tables for NAND and NOR

(5%)

- 2. Use the predicates
 - P(x) : x is a peacock
 - T(x) : x is proud of its tail
 - S(x) : x can sing
 - (A). Give the corresponding First Order Logic well-formed formulas (wffs) for the following statements (assume the universe is the set of all birds)
 - (1). No birds, except peacocks, are proud of their tails (5%)
 - (2). Some birds that are proud of their tails cannot sing. (5%)
 - (3). Some peacock cannot sign.
 - (5%)
 - (B). Show that statement (1) is a conclusion of (2) and (3).
- (10%)
- 3. Determine which of the following are satisfiable: (10%)
 - (a) $(P \lor Q \lor R) (\neg P \lor \neg Q \lor \neg R) (\neg P \lor Q) (\neg Q \lor R)$
 - (b) $(P \wedge Q) \vee R \implies (\neg Q \vee \neg R)$
 - $(c) \neg (P \land Q) \Rightarrow \neg P \lor Q$
 - $(d) \neg (P \lor Q) \Rightarrow \neg P \lor Q$
 - (e) $P \wedge Q \Rightarrow \neg Q$
- 4. Prove or disprove the following are tautologies:
 - (a) $((P \land Q) \Rightarrow R) \Leftrightarrow ((P \land \neg R) \Rightarrow \neg Q)$ (5%)
 - (b) $\neg (P \land Q) \Leftrightarrow \neg P \lor Q$
- (5%)

淡江大學九十一學年度碩士班招生考試試題

系別:資訊工程學系

科目:邏輯導論與機率論

97-2

准帶項目請打「〇」否則打「× 」	
計算機	字典
X	X

本試題共 Q 頁 P.Q

Part 2

1. Let X be a random variable whose distribution function F is given by

$$F(x) = \begin{cases} 0 & x < 0 \\ x/2 & 0 \le x < 2 \\ x/3 & 2 \le x < 3 \\ 1 & x \ge 2 \end{cases}$$
 Find

- (a) P($1/2 \le X \le 1$)
- (2%)
- (b) P($1/2 \le X \le 5/2$)
- (2%)
- (c) P($1 \le X \le 3/2$)
- (2%)
- (d) P($1/2 \le X < 5$)
- (2%)
- (e) P(1 < X < 3)
- (2%)

2. Let X_1, \ldots, X_n be independent random variables having common density function with mean μ and variance σ^2 . Set $\overline{X} = (X_1 + X_2 + \ldots + X_n) / n$. Prove

(a)
$$\sum_{k=1}^{n} (X_k - \overline{X})^2 = \sum_{k=1}^{n} (X_k - \mu)^2 - n(\overline{X} - \mu)^2$$
 (15%)

(hint: consider $X_k - \overline{X} = (X_k - \mu) - (\overline{X} - \mu)$)

(b)
$$E(\sum_{k=1}^{n} (X_k - \overline{X})^2) = (n-1)\sigma^2$$
 (10%)

(hint: use result of part (a))

3. Let X be a continuous random variable with density function f given by

$$f(x) = (1/2) e^{-|x|} \qquad -\infty < x < \infty$$

Find P($1 \le |X| \le 2$)

(15%)