本は題雙面印刷

淡江大學 98 學年度碩士班招生考試試題

系別:資訊工程學系

資訊工程學系資訊網路與通訊碩士班

科目:作業系統

本试题共 2 頁, 6 大題

- 1. Short Answers (30%, 5% for each)
 - (a) Give two criteria a CPU scheduler tries to maximize. Similarly, give two criteria for the minimization.
 - (b) Explain two advantages for the use of virtual memory.
 - (c) Why priority and short-job-first scheduling may suffer from starvation. How to solve it?
 - (d) Why segmentation with paging is commonly used in memory management?
 - (e) Give three file access methods.
 - (f) What is remote procedure call (RPC)? When will it be used?
- 2. In memory management, what is external fragmentation? Give two possible solutions to the external fragmentation problem. (10%)
- 3. The working-set strategy prevents thrashing while keeping the degree of multiprogramming as high as possible. Explain. (10%)
- 4. Consider the following page reference string: 1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2,3,5. Assume initially there are 5 frames as working-set windows.
 - (1). Show how many page faults are occurred for the LRU replacement? (5%)
 - (2). Show how many page faults are occurred for the Optimal replacement? (5%)
 - (3). If the size of working-set windows becomes 4, show the working set when time is just after the second 9. (5%)
- Consider the following set of processes, with the length of the CPU-burst time and arrival time
 given in milliseconds. A small priority number implies a higher priority. The time quantum is 2
 milliseconds.

Process	Burst time	Arrival time	Priority
P1	10	0	4
P2	4	2	. 2
P3	2	3	2
P4	5	5	.1
P5	1	7	3
P6	3	8	1

- (1). Draw the Gantt chart illustrating the execution of these processes using shortest-job-first scheduling. Similarly, draw the Gantt charts for preemptive priority, and round-robin scheduling. (15%)
- (2). What is the waiting time of P1 and P5 processes for each of the scheduling algorithms in part (1)? (5%)

an. 資訊工程學系

資訊工程學系資訊網路與通訊碩士班

科目:作業系統

本試題共 2 頁 6 大題

6. Consider three transactions T₁, T₂, T₃ and two schedules S₁ and S₂ given below where r₁ stands for read operation in transaction T₁; w₁ stands for write operation in transaction T₁, etc. Determine whether S₁ and S₂ are conflict serializable or not. If a schedule is serializable, write down the equivalent serial schedule. (15%)

 $T_1: r_1(X); w_1(X); r_1(Y); w_1(Y);$

 T_2 : $r_2(Z)$; $r_2(Y)$; $w_2(Y)$; $r_2(X)$; $w_2(X)$;

 T_3 : $r_3(Y)$; $r_3(Z)$; $w_3(Y)$; $w_3(Z)$;

 $S_1; r_2(Z); r_2(Y); w_2(Y); r_3(Y); r_3(Z); r_1(X); w_1(X); w_3(Y); w_3(Z); r_2(X); r_1(Y); w_1(Y); w_2(X); r_2(X); r_3(Y); w_3(X); r_3(X); r_3(X);$

 $S_2; \, r_3(Y); \, r_3(Z); \, r_1(X); \, w_1(X); \, w_3(Y); \, w_3(Z); \, r_2(Z); \, r_1(Y); \, w_1(Y); \, r_2(Y); \, w_2(Y); \, r_2(X); \, w_2(X); \, w_3(X); \, w_3(X);$