淡江大學九十學年度白間部轉學生招生考試試題

系別:理工組二年級

科目:微 積 分

准帶項目請打「〇」否則打「× 」	
计算機	字典
Χ	Χ

本は題共 ン 頁

注意:第一題爲填充題,請在答案卷第一頁依序寫上題號再寫答案,不 必寫出演算過程。第二、三、四、五題爲計算、証明題,務必要 有演算過程。

- 一、填充題(共10小題,每小題6分)
 - 1. Evaluate $\lim_{h\to 0} \frac{(1+h)^{100}-1}{h}$.
 - 2. Find the point on the parabola $y^2 = 2x$ that is closest to the point (1,4).
 - 3. Consider the function $f(x) = x^3 + x + 1$. Find $(f^{-1})'(1)$.
 - 4. Evaluate $\int_{-1}^{1} \frac{\tan x}{1+x^2} dx$.
 - 5. Find the volume of the solid obtained by rotating the region bounded by $y = x x^2$ and y = 0 about the line x = 2.
 - 6. Evaluate the iterated integral $\int_0^1 \int_y^1 e^{x^2} dx dy$.
 - 7. A curve C is defined by the parametric equations $x = t^2$ and $y = t^3 3t$. Find $\frac{d^2y}{dx^2}$ at t = 1.
 - 8. For what values of a and b does the function $f(x) = x^3 + ax^2 + bx + 2$ have a local maximum when x = -3 and a local minimum when x = -1?
 - 9. Evaluate $\int \ln x dx$.
 - 10. Find $\lim_{n\to\infty} \frac{1}{n} (\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \dots + \sqrt{\frac{n}{n}}).$

淡江大學九十學年度日間部轉學生招生考試試題

系別:理工組二年級

科目:微 積 分

准帶項目請打「	○」否則打「x
计算機	字典
X	X

本試題共 ン 頁

- (10分) 二、 (a) Prove that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$, where f(x) is a continuous function.
 - (b) Use part (a) to show that $\int_0^{\frac{\pi}{2}} \frac{\sin^n x}{\sin^n x + \cos^n x} dx = \frac{\pi}{4}.$
- (10 $\mbox{$\beta$}$) \equiv Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{1 \cdot 3 \cdot 5 \cdots (2n-1)} x^n$.
- (10分) 四、 If $z = y + f(x^2 y^2)$, where f is differentiable, show that $y\frac{\partial z}{\partial x} + x\frac{\partial z}{\partial y} = x$.
- (10分) 五、 Find the volume of the solid bounded by the plane z=0 and the paraboloid $z=1-x^2-y^2$.