淡江大學 95 學年度碩士班招生考試試題

85-1

系別: 航空太空工程學系

科目:自動控制

- 1. (12%) Sketch a basic structure (a block diagram) of a feedback control system. In the diagram, you have to include, at least, a desired input, a disturbance input, a controlled output, a controlled plant, a controller, an actuator, and a sensor. Describe the purpose and basic function of each component and explain the objective and operation of the control system (You can use an example to backup your explanations).
- 2. (10%) Given a dynamical system with transfer function

$$G(s) = \frac{Y(s)}{R(s)} = \frac{1}{s^2 + 3s + 2}$$

Where R(s) is the Laplace transform of the input signal r(t), Y(s) is the Laplace transform of the output signal y(t). Find the steady state response, $y_{ss}(t)$, and the transient response, $y_t(t)$, to the input r(t) = 10t, $(t \ge 0)$.

3. (15%) A feedback control system is shown in Figure 1 below with a PID controller C(s) and plant G(s) given as

$$C(s) = 3(1 + \frac{1}{K_I s} + K_D s)$$
; $G(s) = \frac{6}{s^2 + 3s + 18}$

Figure 1

- (a). If integral action is not employed, find the derivative gain K_D required to make the closed-loop system critically damped.
- (b). With the result of (a), do you expect that the step response of the closed-loop system will have overshoot? Give reasons.
- (c). If K_D is maintained as in (a), determine the minimum value of K_I that can be used without causing instability.

淡江大學 95 學年度碩士班招生考試試題

系別:航空太空工程學系

科目:自動控制

准带	項目請打「V」
\checkmark	簡單型計算機
	Labre it 7

本試題共 3 頁 P2

4. (15%) The loop transfer function G(s) of a unit feedback system has the following frequency response.

ω(rad/sec)	2	3	4	8	9	10	15
$ G(j\omega $	10.25	6.35	2.50	1.00	0,75	0.50	0.18
$\angle G(j\omega)$	-120°	-145°	-158°	-170°	-175°	-180°	-210°

- (a). Determine the gain margin and phase margin of the system.
- (b). Determine the change in gain required so that the gain margin of the system is 10 dB.
- (c). Determine the change in gain required so that the phase margin of the system is 60°.
- 5. (18%) The step responses of the following transfer functions are shown in Figure 2, in random order. Match the system with its response.

(a).
$$H_1(s) = \frac{1}{s+1}$$
 (b). $H_2(s) = \frac{10}{s+10}$ (c). $H_3(s) = \frac{1}{s^2 + 0.4s + 1}$ (d). $H_4(s) = \frac{1}{s^2 + 4s + 1}$ (e). $H_5(s) = \frac{s}{s^2 + 0.4s + 1}$ (f). $H_6(s) = \frac{s-2}{s^2 + 0.4s + 1}$ (g). $H_7(s) = \frac{s+2}{s^2 + 0.4s + 1}$ (h). $H_8(s) = \frac{2}{s^2 + 0.4s + 2}$ (i). $H_9(s) = \frac{5}{s^2 + 4s + 4}$

Figure 2

Write your answer in the format as: $H_1(s) \to \operatorname{Fig} X$, $H_2(s) \to Y$, ... (where X, Y are picked from $A \sim I$).

淡江大學 95 學年度碩士班招生考試試題

81-3

系別: 航空太空工程學系

科目:自動控制

准帶項目請打「V」					
\checkmark	簡單型計算機				
	本試題共 3	頁			

6. (20%) The closed-loop frequency response $|M(j\omega)|$ -verse-frequency of a stable second-order system with no finite zero is shown in figure 3 below. Sketch the corresponding unit-step response of the system; indicate the value of the maximum overshoot, peak time, and the steady-state error due to unit-step input.

Figure 3.

7. (10%) The lead/lag compensator has the form

$$C(s) = K \frac{s+z}{s+p}$$

Where K, z, and p are constant.

- (a). What do the names "lead", "lag" refer to?
- (b). Can we use lag compensator to improve phase margin? Explain.