淡江大學九十三學年度碩士班招生考試試題

系別:航空太空工程學系

科目:自動控制

准帶項目請打「〇」否則打「× 」
簡單型計算機
0

本試題共 参 頁 - 1

#1 (20%) Consider the system, as shown in the block diagram below.

(a) Show that the closed-loop transfer function is given by

$$Y(s) = \frac{1 + s/c_i}{s^2/Kc_i + s/c_i + 1}$$

- (b) Determine the formula for the characteristic roots λ_1 and λ_2 of the closed-loop system in terms of K and c_i .
- (c) Determine formulas for K and c_i in terms of the undamped natural frequency ω_n and damping ratio ζ for the closed-loop system.
- (d) For $\omega_n = 20$ rad/sec. and $\zeta = 0.5$, determine the required values for K and c_i .
- (e) Determine the steady-state response θ_{os} for t > 0 when the input is the unit ramp function defined as following (for the values of K and c_i obtained in (d)):

$$\theta_i = 0$$
, $t \leq 0$

$$=t$$
, $t>0$

What is the steady-state error?

#2 (15%) A control system has an open-loop transfer function given by

$$G(s) = \frac{K(c_i + s)}{s(s+2)^2}$$

- (a) For $c_i = 1$, sketch the root locus for $0 < K < \infty$.
- (b) Determine the value of c_i such that -1.8 + j2 lies on the root locus. What is the corresponding gain K?
- (c) For the K in (b), what are the other two closed-loop roots?

淡江大學九十三學年度碩士班招生考試試題

系別:航空太空工程學系

科目:自 動 控 制

本試題共 天 頁-2

#3 (25%) Consider the closed-loop yaw damper control system shown below, where the system output is the airplane yaw rate R. We wish to make a root locus plot for $0 \le K < \infty$.

- (a) Show that the open-loop zeros are $\pm j$ and the open-loop poles are $0, \pm j2$.
- (b) Find the angles at which the locus leaves the poles $\pm j2$ and the angles at which the locus terminates at the zero $\pm j$.
- (c) Assume that the point -.736 + j1.5 is on the locus. Sketch the root locus.
- (d) What is the gain constant K such that $-.736 \pm j1.5$ are closed-loop roots (a graphical calculation from your sketch is O.K.).
- (e) What is the damping ratio ζ for the root pair in (d)?

#4 (15%)

(a) Determine the closed-loop transfer function for the control system shown below.

- (b) Will the closed-loop system as shown have a steady-state error for a constant velocity (ramp function) input? Why?
- (c) How many characteristic roots will the closed-loop system have? Why?

淡江大學九十三學年度碩士班招生考試試題

系別:航空太空工程學系

科目:自 動 控 制

准带项目i	青打	٥٦.	否則打	ر× ۲
簡單型計算機				
		Q		

本試題共 人 頁-3

#5 (25%) The pure inertia plant shown in the figure below is part of a control system with proportional and derivative feedback.

(a) We wish to make a root locus plot for $0 < C_d < \infty$. Show in this case that the open-loop transfer function for such a root-locus plot is given by

$$G(s) = \frac{Ks}{K + s^2}$$

- (b) Using G(s) in (a) with K=4, sketch the root locus plot for $0 < C_d < \infty$. To help in making your plot, calculate the angles at which the locus leaves the open loop poles and any breakaway points.
- (c) From your root locus sketch in (b) estimate the value of the closed-loop roots corresponding to $\zeta = 0.5$.
- (d) From your result in (c) determine (graphically, if you wish), the value of the rate-constant C_d which gives the roots shown.
- (e) From the closed-loop transfer function, $Y(s) = \theta_0/\theta_i$, determine the analytic formula for the closed-loop characteristic roots in terms of K and C_d . For K=4 determine C_d such that $\zeta=0.5$. Compare with your result in (d).