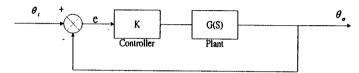
淡江大學九十學年度碩士班招生考試試題


系別:航空太空工程學系

科目:自動控制

准带項目請打「〇	」否則打「x 」
計算機	字典
0	X

本試題共 | 次 頁

1. (30 points) A control system has the configuration shown below.

The open loop transfer function G(s) is given by

$$G(s) = \frac{s+2}{s(s^2+4s+8)}$$

- (a) Show that the open-loop system has a zero given by $z_1 = -2$ and three poles given by $p_1 = 0$, $p_{2,3} = -2 \pm 2j$ (3 points)
- (b) Consider the root locus plot for $0 \le K \le \infty$. Determine the angle at which the locus leaves $p_2 = -2 + 2j$. (7 points)
- (c) Show that the point $-1.5 \pm 2.784j$ is on the locus. (5 points)
- (d) Find the gain constant K which gives the root in (c).(5 points)
- (e) Determine the other two closed loop characteristic roots for the gain in (c). (5 points)
- (f) Sketch the root locus for $0 < K < \infty$. (5 points)
- 2. (20 points) We wish to modify the controller in Problem 1 in order to obtain a closed loop root pair with a negative real part equal to -2 and a damping ratio $\xi = 0.5$.
- (a) Show that the root pair in this case is given by $-2 \pm 3.464j$. (5 points)
- (b) What is the undamped natural frequency ω_n for the root pair in (2a).(5 points)
- (c) Assume that we modify the controller by adding a zero at $z_2 = -2$ and a pole p_4 . What must be the pole p_4 to have the points $-2 \pm 3.464j$ be on the locus? (10 points)
- 3. (20 points) A control system has an open loop transfer function KG(s), where

$$G(s) = \frac{1-s}{s(s+1)}$$

A table of $[G(j\omega)]_{real}$ and $[G(j\omega)]_{lmag}$ versus ω is shown below:

ω	$[G(j\omega)]_{real}$	$[G(j\omega)]_{imag}$	· · · · · · · · · · · · · · · · · · ·
0.25	-1.88	-3.53	
0.5	-1.60	-1.20	
1.0	-1.0	0.0	
2.0	-0.4	0.3	· · · · · · · · · · · · · · · · · · ·
4.0	-0.118	0.22	
8.0	-0.031	0.12	

Make a Nyquest plot and determine closed loop stability for all K, both positive and negative.

淡江大學九十學年度碩士班招生考試試題

系別:航空太空工程學系

科目:自動控制

准帶項目請打「〇」否則打「x 」		
計算機	字典	
0	X	

本試題共 / 人) 頁

- 4. (30 points) A spacecraft booster, when flying in the atmosphere, obeys the following differential equation: $\ddot{\theta_0} \theta_0 = f(t)$. Here θ_0 is the booster pitch angle and f(t) is the thrust vector angle used for pitch control.
 - (a) Referring to the figure in Problem 1, Let the booster be the plant in the feedback system. What is the transfer function? (5 points)
 - (b) If the transfer function of the controller in the system to be K, sketch a root locus for $0 < K < \infty$. Is the system stable for K > 0. (10 points)
 - (c) Next let the controller to be $Y(s) = \frac{5K(s+2)}{(s+10)}$. Sketch the root locus for $0 < K < \infty$. Is the system stable for K > 0. Explain. (15 points)