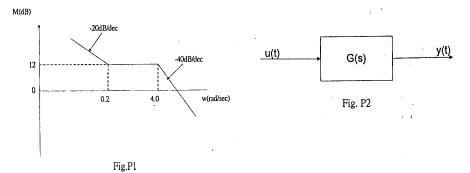
淡江大學八十七學年度碩士班入學考試試題

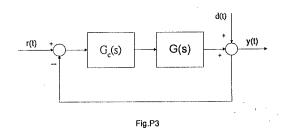
系别: 航空太空工程學系 科目: 自動控制

本試題共 2 頁

- 1. Given a system whose amplitude curve $M = |G(j\omega)|$ has the following straight-line approximation:
 - a) (7%) Determine the transfer function G(s). Assume that the system has minimum phase.
 - b) (8%) Sketch the corresponding asymptotic phase shift curve.
 - c) (5%) Solve for the actual values of M(dB) and φ (phase angle) at $\omega = 10 \, rad \, / \sec$.



- 2. (10%) For a stable system, G(s), shown in Fig. P2 where $u(t) = e^{j\omega t}$, $\omega \in R$. Find the steady state response $y_{ss}(t) \triangle \lim_{t \to \infty} y(t)$.
- 3. Consider the closed-loop system given in Fig. P3 where $G(s) = \frac{D}{Js + D}$, J > 0, D > 0. Assume that the system is subjected to a disturbance d(t). Please design a stabilizing controller $G_c(s)$ and show that in the **steady state** the disturbance can be eliminated when a) (7%) d(t) = A, where A is an unknown constant. b) (8%) $d(t) = A\sin(\omega t)$, where ω is a known frequency however A is an unknown constant.



4. Consider an electromagnetic system shown in Fig.P4, where the electromagnetic force $F_m(t) = \frac{i^2(t)}{y(t)}$. The objective of the system is to control y(t), the position of the steel block M, by adjusting the current i(t) in the electromagnet through the **input** voltage e(t). Assume that at the **static** equilibrium point (steady state) the spring position is $y(t) = y_0$ (measured from unstretched position), and the corresponding current is $i(t) = i_0$. Let's define

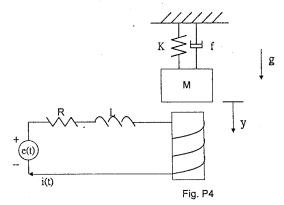
淡江大學八十七學年度碩士班入學考試試題

系别: 航空太空工程學系 科目: 自動控制

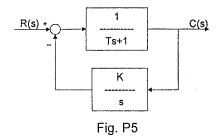
本試題共 2 頁

e(t) = input voltage, y(t) = position of mass M, i(t) = winding voltage, R = winding resistance, L = winding inductance, M = mass of steel block, K = spring constant, f = damping coefficient of damper, g = gravitational acceleration.

- a) (5%) Find the relationship between y_0 and i_0 .
- b) (7%) Linearize the system differential equations about the above equilibrium point.
- c) (8%) For the <u>linearized</u> system, determine the corresponding transfer function T(s) = Y(s)/E(s), where Y(s) = L(y(t)), E(s) = L(e(t)).
- d) (5%) Give one state space realization of the transfer function you found in part c). That is, find proper matrices A, B, C, D such that $T(s) = C(sI A)^{-1}B + D$. (You have to define the state variables.)



- 5. The design specifications for the closed-loop system given in Fig. P5 are as follows: the closed-loop poles lie to the left of s = -2 in the s-plane, and the damping ratio $\varsigma \ge 0.5$.
 - a) (5%) Identify the desired area in the s-plane for the closed-loop poles.
 - b) (10%) Find the range of "K" and "T" when the design specifications are satisfied.



6. (15%) Assume that the characteristic equation of a closed-loop system is $s^3 + 10s^2 + Ks + K = 0$. Sketch the root loci for $K \ge 0$. Find the break-away and/or break-in points if there is any.