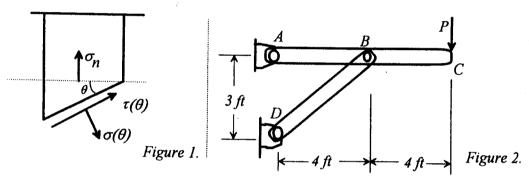
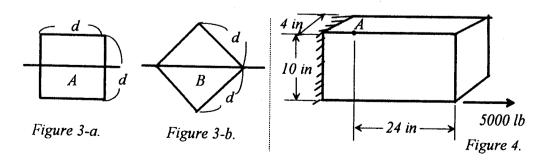
淡江大學九十學年度碩士班招生考試試題


系別:航空太空工程學系

科目:材料力學


准帶項目請打「○」否則打「× 」	
計算機	字典
0	\times

本試題共 2 頁

1. Find the relationship that must exist between the normal stress $\sigma(\theta)$ and shear stress $\tau(\theta)$ at the cross-section of the bar shown in *Figure* 1, such that the resultant stress in the longitudinal direction is only axial. Determine the resulting axial normal stress σ_n in terms of $\sigma(\theta)$ and $\tau(\theta)$, and show that the result is explicitly independent of the angle θ . (20%)

- The rigid bar ABC is hinged at A and supported by link BD at B as shown in Figure
 Link BD is made of steel (E=30 x 10⁶ psi) and has a diameter of 2.5 inches. Find the magnitude of the applied load P if the vertical displacement of point C is 0.136 inches. (20%)
- 3. A beam of square cross-section is to be used to carry a pure bending moment. The beam can be mounted in either of two configurations as shown in *Figure 3-a*, and 3-b, with bending about the horizontal axis. The material is linearly elastic.
 - (a) Determine the moment of inertia for configuration A (Fig. 3-a) in terms of d. (5%)
 - (b) Determine the moment of inertia for configuration B (Fig. 3-b) in terms of d. (5%)
 - (c) If the same maximum allowable bending stress is permitted for either case, determine the ratio of the maximum bending moments M_A/M_B . (10%)

4. Determine the normal stress at point A for the figure shown in Figure 4. (20%).

淡江大學九十學年度碩士班招生考試試題

系別: 航空太空工程學系

科目:材料力學

准帶項目請打「○」否則打「× 」	
計算機	字典
0	\times

本試題共 2 頁

5. A copper bar 1 m in length is attached to a wall on the left hand side as shown in Figure 5. For a $60^{\circ}C$ rise in temperature, determine the stress produced in the bar. Consider both walls rigid and immovable. Assume coefficient of linear expansion, $\alpha=0.0000168$ /°C, and modulus of elasticity, E=117 GPa. (20%).

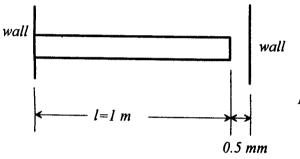


Figure 5.