淡江大學九十四學年度碩士班招生考試試題 1001

系別: 航空太空工程學系

科目:動 力 學

准帶項目請打「V」				
V	簡單型計算	機		
本試題共 2. 頁				

- 1. Block A in Figure 1 is moving downward at 5 ft/sec at a certain time when the spring is compressed 6 in. The coefficient of friction between block B and the plane is 0.2, the pulley is light, and the weight of A and B are 161 and 193 lb, respectively.
- (a) Find the distance that A falls from its initial position before coming to zero speed. (15%) Hint: It is known that Work (W)= Kinetic Energy of final position (T_f) Kinetic Energy of initial position (T_i)=0- T_i , and $W_{spr}+W_{g \text{ on } A}+W_{friction}=\Delta T$
- (b) Determine whether or not body A will start to move back upward. (15%)

Hint: $\underline{\mathbf{H}}$ it stayed in this position, the force in the cable would be 161 lb, which would leave A in equilibrium. What would be the free-body-diagram of B in this position...

Figure 1.

2. Figure 2 shows a circular cam B_1 and an oscillating roller follower consisting of the roller B_2 (which rolls on B_1) and the follower bar B_3 . If the cam turns at the constant angular velocity 0.3 rad/sec (counter-clock-wise), find the angular velocity of the follower bar and of the roller at the given instant. (20%)

Figure 2.

淡江大學九十四學年度碩士班招生考試試題

系別: 航空太空工程學系

科目:動 力 學

准带	項目請打「V		
\	簡單型計算	- 機	2/
	本試題共 2	2 頁	72

3. The uniform slender bar of mass m is released from rest in the position shown in Figure 3. Find the angular acceleration when the bar has turned through 45° . (20%)

Figure 3.

4. Cylinder B in Figure 4 is moving up the plane with $v_c=0.3$ m/sec at an initial instant when the spring is stretched 0.2m. If B does not slip at any time, determine how far **down** the plane the point C will move in the subsequent motion. Note: The spring, connected to the cord, cannot be in compression. (30%)

Hint: Let t_i be the instant when C is back in same position given in problem. There, its center velocity is now 0.3 *m/sec* down the inclined surface, since no energy was lost, Therefore, $W = \Delta T$ is still available...

Figure 4.