淡江大學九十一學年度碩士班招生考試試題

系別:航空太空工程學系

科目:流體力學

90-1

准帶項目請打「〇」否則打「x 」	
計算機	字典
0	X

本試題共 2 頁

一、 解釋名詞及簡答題:

- 8% (1) 說明 Dimensional Analysis 之目的。
- **8%** (2) 高爾夫球上凹孔之目的係讓球飛的更遠,試由流體力學之觀點說明其原理。
- 8% (3) What is Reynolds number? Why Reynolds number 愈大,流場愈傾向於 turbulent flow?
- 8% (4) What is boundary layer? Laminar and turbulent boundary layer 內之 velocity profile 有何不同(可以圖示表示之)? What makes the difference?
- 8% (5) 說明作縮小模型實驗時,需注意之事項。

二、 計算題(一): 20%

Water flows steadily past a porous flat plate. Constant suction is applied along the porous section. The velocity profile at section cd is:

$$\frac{u}{U_{w}} = 3\left(\frac{y}{\delta}\right) - 2\left(\frac{y}{\delta}\right)^{1.5}$$

Evaluate the mass flow rate across section bc.

三、計算題(二): 20%

A static thrust stand, as shown below, is to be designed for testing a jet engine.

The following conditions are known for a typical test:

Intake air velocity = 200 m/s

Exhaust gas velocity = $500 \, m/s$

Intake cross-sectional area = $1 m^2$

Intake static pressure = -22.5 Kpa = 78.5 Kpa (abs)

Intake static temperature = 268 K

淡江大學九十一學年度碩士班招生考試試題

系別: 航空太空工程學系

科目:流體力學

90-2

准帶項目請打「〇」否則打「× 」	
計算機	字典
0	X

本試題共 2 頁

Exhaust static pressure = 0 Kpa = 101 Kpa (abs) Estimate the nominal thrust for which to design. (Note: the gas constant of air is 287 J/Kg K)

三、計算題(三): 20%

Consider a smooth sphere, of diameter D, immersed in a fluid moving with speed V. The drag force on a 3 m diameter weather balloon in air moving at 1.5 m/s is to be calculated from the test data. The test is to be performed in water using a 50 mm diameter model. Under dynamically similar conditions, the model drag force is measured as 3.78 N. Evaluate the model test speed and the drag force expected on the full-scale balloon.

(Note: The kinematic viscosity of water and air is 1×10^{-6} m^2/s and 1.45×10^{-5} m^2/s , respectively. The density of water and air is 1000 kg/m^3 and 1.23 kg/m^3 , respectively.)