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1. A (‘:ompany‘irlf‘éighufacmu*es two products. The price function for product A
isp=16—1x, 0<z <16, and for product B is ¢ = 19 — %y, 0 <y <38,
both in thousands of dollars, where x and y are the amounts of products A
and B, respectively. If the cost function is C(z,y) = 102 + 12y — 2y + 6
thousands of dollars, find the quantities and prices of the two products that
maximize profit. Also find the maximum profit.

2. Iind the volume under the surface f(x,y) = ¢ over the region which is

bounded by curves y = 2, y = 3z and = = 2.




