本試題雙面印

刷

淡江大學 103 學年度碩士班招生考試試題

系別: 航空太空工程學系

科目:工程數學

考試日期:3月2日(星期日) 第2節

本試題共 五 大題,

兩頁

1. (25 points) A real matrix is given as

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ -3 & 3 & 5 \end{bmatrix}$$

- (a) (10 points) Determine all eigenvalues (regular eigenvectors, and generalized eigenvectors) of the matrix.
- (b) (15 points) Transform the matrix into its Jordan form by constructing modal matrix with the regular and generalized eigenvectors.
- 2. (10 points) Compute e^{At} for the following matrix:

$$\mathbf{A} = \begin{bmatrix} -3 & 1 \\ 0 & -2 \end{bmatrix}$$

3. (25 points) Consider the initial value problem:

$$\mathbf{x'} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix} \mathbf{x}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

- (a) (5 points) Find the eigenvalues.
- (b) (10 points) Obtain the associated eigenvectors.
- (c) (10 points) Obtain the solution of the initial value problem.
- 4. (20 points) Find the inverse Laplace Transforms of the functions:

(a) (10 points)
$$\frac{s+2}{s^2+4s+13}$$

(b) (10 points)
$$\frac{1}{s(s+1)}$$

5. (20 points) Consider two coordinate frames:

 $x_1x_2x_3$ with unit vectors $\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}$

$$x_1'x_2'x_3'$$
 with unit vectors e_1', e_2', e_3'

If their origins coincide, as shown in Fig.P5, the unit vectors e_1', e_2', e_3' can be expressed in terms of the unit vectors e_1, e_2, e_3 as

$$e'_{1} = (e'_{1} \cdot e_{1})e_{1} + (e'_{1} \cdot e_{2})e_{2} + (e'_{1} \cdot e_{3})e_{3}$$

$$e'_{2} = (e'_{2} \cdot e_{1})e_{1} + (e'_{2} \cdot e_{2})e_{2} + (e'_{2} \cdot e_{3})e_{3}$$

$$e'_{3} = (e'_{3} \cdot e_{1})e_{1} + (e'_{3} \cdot e_{2})e_{2} + (e'_{3} \cdot e_{3})e_{3}$$
(5-1)

Let the frame $x_1x_2x_3$ rotates about the x_2 axis with an angle of θ to obtain the frame $x_1'x_2'x_3'$.

淡江大學 103 學年度碩士班招生考試試題

43-1

系別: 航空太空工程學系

科目:工程數學

考試日期:3月2日(星期日) 第2節

本試題共 五 大題,

丙 頁

- (a) (10 points) Referring to the Fig. P5 and Eq. (5-1), obtain the transformation matrix R from frame $x_1x_2x_3$ to frame $x_1'x_2'x_3'$.
- (b) (10 points) Show that the transformation matrix R is an orthogonal matrix.

Figure P5.