淡江大學 101 學年度碩士班招生考試試題

系別: 航空太空工程學系

科目:工程數學

考試日期:2月26日(星期日) 第3節

本試題共

五 大題, 乙 頁

1. (20 points) A real, symmetric matrix A is given as

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -2 & 4 \\ 0 & 4 & 2 \end{bmatrix}$$

- (a) Find the eigenvalues and associated eigenvectors,
- (b) Find a real orthogonal matrix that diagonalizes A.
- 2. (20 points) Find all solutions of $\mathbf{x'} = \mathbf{A}\mathbf{x}$, where the matrix **A** is as given below.

(a)
$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix}$$
.

(b)
$$\mathbf{A} = \begin{bmatrix} 5 & -4 & 4 \\ 12 & -11 & 12 \\ 4 & -4 & 5 \end{bmatrix}$$

3. (20 points) Consider the initial value problem:

$$\mathbf{x}' = \begin{bmatrix} -2 & -1 & -5 \\ 25 & -7 & 0 \\ 0 & 1 & 3 \end{bmatrix} \mathbf{x}, \quad \mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

- (a) Find the eigenvalues.
- (b) Obtain the associated eigenvectors.
- (c) Obtain the solution of the initial value problem.
- 4. (20 points) Find the inverse Laplace transform of each function.

(a)
$$\frac{4}{(s^2+4s+20)}$$
.

(b)
$$\frac{1}{s(s-4)^2}$$
.

5. (20 points) Use Laplace transform to solve the following initial value problem.

$$x'' - 2x' + 3y' + 2y = 4,$$

$$2y' - x' + 3y = 0,$$

$$x(0) = x'(0) = y(0) = 0.$$