65-1

淡江大學 97 學年度碩士班招生考試試題

系別:機械與機電工程學系

科目:自動控制

准带工	頁目請打「V」]
V	簡易型計算機		
	試題共2頁	4	大週

1. (20%) A spring-mass-damper system is shown in Figure 1. Find the transfer function Y(s)/F(s).

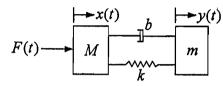


Figure 1 Spring-mass-damper system

2. (20%) Consider the unity negative feedback control system of Figure 2, where the process transfer function is expressed as

$$G(s) = \frac{k}{s(s + \sqrt{3k})}$$

- a. Determine the percent overshoot and settling time (using 2% settling criterion) due to a unit step input.
- b. For what range of k is the settling time less than 1.2 sec?

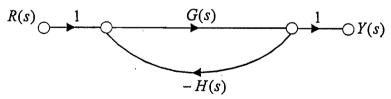


Figure 2 A feedback control system

淡江大學 97 學年度碩士班招生考試試題

系別:機械與機電工程學系 科目:自動控制

准帶工	頁目請打「V」	_	
V	簡易型計算機	:	
本	試題共2頁	4	大題

3. (30%) Consider the feedback control system of Figure 3, where the loop transfer function is

$$GH(s) = \frac{K}{s(s+2)}$$

- a. Sketch the root locus for the feedback control system.
- b. If we require the damping ratio of the dominant complex roots to be $\zeta=0.45$, please determine the loop gain K to meet the requirement.
- c. If we require further that the system velocity error constant is $K_v=20$ (damping ratio is still $\zeta=0.45$), please design a cascade phase-lag compensator $C(s)=\frac{(s+z)}{s+p}$ to meet the requirements.

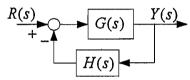


Figure 3 A feedback control system

4. (30%) Consider the feedback control system of Figure 3, where the loop transfer function is

$$GH(s) = \frac{K}{s(s+2)}, \qquad H(s) = 1$$

- a. If the requirement of percent overshoot is less than 5% for this second-order system, determine the damping ratio ζ , the natural frequency ω_n , and the loop gain K for the system.
- b. Plot the Bode diagram for the loop transfer function in Question a.
- c. Design a cascade phase-lead compensator to meet the requirement of the percent overshoot to be less than 5% and a requirement of the system phase margin to be approximately 65°.

Note: For a phase-lead compensator $C(s) = \frac{K_c(s+z)}{s+p}$:

the magnitude and phase at the maximum phase angle are

$$|C(j\omega)| = \sqrt{\frac{p}{z}}$$

$$\angle C(j\omega) = \phi_m(\omega) = \sin^{-1}\left(\frac{p-z}{p+z}\right)$$

The frequency at the maximum phase lead is

$$\omega_m = \sqrt{zp}$$