淡江大學八十九學年度碩士班招生考試試題

系別:機械工程學系

科目:自動控制

本試題共 2 頁

1. (20%) Consider the system shown in the following figure, find the root locus of the system when K > 0? What is the range of K for which the system is stable?

- 2. (10%) Sketch the Bode diagram for the transfer function : $G(s) = \frac{40 \text{ s}}{(s+1)(s+20)}$
- 3. (30%) Given the double integrator system shown below, design a closed loop controller for θ , the performance required is:
 - a) no overshoot for step input
 - b) no steady state error for step θ command
 - c) bandwidth of the closed loop system = 10 rad/sec.
 - d) rise time as short as possible

You may use θ , ω , or both θ and ω as feedback for the controller, and may not use derivative operation in the controller.

$$\frac{u}{s} = \frac{I}{s} \frac{\omega}{s}$$

4 (30%) A motor-load system connected with a shaft is shown below. Let J_1 and J_2 be the inertia of motor and load respectively, K_r is the spring constant of the connection shaft, and T is the motor generated torque. Find $\frac{\theta(s)}{T(s)}$ and sketch its

Bode diagram (approximate)?

《注意背面尚有試題▶

本試題雙面印

淡江大學八十九學年度碩士班招生考試試題

系別:機械工程學系

科目:自動控制

5. (10%) The frequency response of a closed-loop control system is shown below, where |G(s)| and $\angle G(s)$ are the magnitude and phase plots of the system separately, find y(t) when $r(t) = 10 \sin(40 t)$?

