淡江大學八十七學年度碩士班入學考試試題

系别: 機械工程學系 科目: 自動控制

本試題共 ン 頁

- 1. (30%) A lathe(車床) has a cross-slide whose position is to be automatically controlled to follow a parabolic cutting profile of the form $y_0+y_1t+1/2$ y_2 t^2 with cutting time. Assume proportional, derivative and integrating control actions are to be employed and that the cross-slide has mass m and can be represented as a double integration plant.
 - (a) (5%) Find the Laplace transform of $y_0 + y_1 t + 1/2 y_2 t^2$.
 - (b) (10%) Draw a block diagram of the system.
 - (c) (10%) Derive its closed loop transfer function.
 - (d) (5%) Determine the steady state error of the cross-slide position as it follows the reference input cutting profile.
- 2. (15%) Sketch the root loci for the closed-loop control system with

$$G(s) = \frac{K}{s(s+1)(s^2+4s+5)}, H(s) = 1$$

- 3. (15%) Prove that the polar plot of the transfer function $G(s) = \frac{sT}{1+sT}$ is a semicircle. Find the center and radius of the circle.
- 4. (15%) Figure 1 shows the block diagram of a motor control system with tachometer feedback. Find the range of the tachometer constant K_t so that the system is asymptotically stable.

Figure 1

淡江大學八十七學年度碩士班入學考試試題

系别: 機械工程學系 科目: 自動控制

本試題共 ン 頁

- 5. (25%) Figure 2 shows the diagram of a printwheel system with belts and pulleys. The belts are modeled as linear springs with spring constants K_1 and K_2 . $T_m(t)$ is the motor torque, $\theta_m(t)$ the motor displacement, y(t) the linear displacement of the printwheel, J_m the motor inertia, B_m the motor viscous-friction coefficient, r the pulley radius, and M the mass of the printwheel.
 - (a) (10%) Write the differential equations of the system using θ_m and y as the dependent variables.
 - (b) (10%) Write the state equations using $x_1 = r\theta_m y$, $x_2 = dy/dt$, and $x_3 = \omega_m = d\theta_n/dt$ as the state variables.
 - (c) (5%) Draw a state diagram for the system.

Figure 2