## 淡江大學九十四學年度碩士班招生考試試題

系別:機械與機電工程學系 科目:動態系統

| 准帶項目請打「〇」否則打「×」 | _ |  |  |  |  |  |  |  |
|-----------------|---|--|--|--|--|--|--|--|
| 簡單型計算機          |   |  |  |  |  |  |  |  |
| 0               |   |  |  |  |  |  |  |  |

本試題共2頁 第1頁

- 1. (25%) A mass-pulley system shown in Figure 1 has a rotating wheel of inertia J. Two springs and a damper are connected to the wheel using a cable without slip on the wheel. Where  $k_1$  and  $k_2$  are spring constants, b is the coefficient of viscous friction, d is the diameter of the wheel, x is the displacement of mass m,  $\theta$  is the rotation angle of the wheel, and u(t) is an input motion.
  - a. Derive the force balance equation for the mass m, the moment balance equation for the wheel, and the displacement equation for x and  $\theta$ .
  - b. Derive the equation of motion for the system in terms of variable x and the input motion u(t).
  - c. Determine the natural frequency and damping ratio of this second-order system.



Mass-pulley system Figure 1

- 2. (25%) Consider the RLC circuit of Figure 2, which consists of the series connection of a voltage source,  $v_s(t)$ , a resistor R, an inductor L and a capacitor C.
  - a. Find the transfer function between the capacitor voltage  $v_c(t)$  and the input voltage source  $v_s(t)$ .
  - $\frac{v_R(j\omega)}{v_s(j\omega)}$ . Also calculate the resonant frequency, if  $R=10\Omega$ , an b. Determine the frequency response,

inductor L=5mH, and a capacitor  $C=10\mu F$ .



RLC circuit Figure 2

【注意背面尚有試題】

## 淡江大學九十四學年度碩士班招生考試試題

| 25.5 | 29 a | • | 一种人名英格兰多姓 化烷二  | 11.        |          | -     |              |    | 49.10        |
|------|------|---|----------------|------------|----------|-------|--------------|----|--------------|
| 2    | Ø.1  |   | 144 14 550 144 | TO TO 10 1 | 组 2 11 口 |       | <b>4</b> L   | 能多 | **           |
| 爪    | נינג | ٠ | 機械與機           | 电 一 程:     | 學系科目     | 1 12  | · <b>J</b> U | 心水 | <b>STL</b> H |
|      |      |   |                |            | 1        | : 1:1 | 331 7 3      |    | - T 2        |

准帶項目請打「O」否則打「×」 簡單型計算機

本試題共2頁 第2頁

- 3. (25%) A 1000kg boxcar with a velocity 1 m/s approaches an arresting system composed of a linear spring and a viscous damper as shown in Figure 3.
  - a. Derive the equation of motion describing what happens after the car contacts the arresting system.
- b. Find the time and distance when the car first time comes to rest. Assume that k=25N/m and b=350N sec/m.

k k



Figure 3 Boxcar

- 4. (25%) For the circuit shown in Figure 4, assume that the switch  $S_1$  is opened for a long time and closed at t=0 sec, then, the circuit can be viewed as a first-order system.
  - a. Determine the capacitor voltage,  $v_c(t)$  at  $t=0^+sec.$
  - b. Derive an expression for the capacitor voltage  $v_c(t)$  when t>0 sec.
  - c. What is the time constant,  $\tau$ , of the circuit for t > 0 sec?



Figure 4 First-order circuit