
淡江大學八十七學年度碩士班入學考試試題

系别: 機械工程學系 科目: 工程數學

本試題共 2 頁

說明:一共有四題,每題都必須回答;可用中文回答。

1.(25%)

p (Nt/m)

elastic foundation

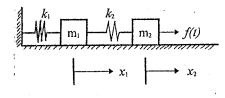
The device shown in the figure may rotate about the n-n axis.

- (a) A two dimensional fluid flow is produced by a source at the origin. In this case the velocity is given by $\vec{v} = f(r)\vec{u}_r$, where f is a function of $r = \sqrt{x^2 + y^2}$, and $\vec{u}_r = (x\vec{i} + y\vec{j})/r$ is the unit vector in the direction of r. Does this flow bring the device into rotation? Prove your answer.
- (b) The velocity function of a flow in the y direction is given by $\vec{v} = v_0 \ln \left(\frac{a-s}{a+s} \right) \vec{j} \text{ , where } v_0 \text{ and } a \text{ are constants, and } s = \sqrt{a^2 x^2} \text{ .}$

Does this flow bring the device into rotation? Prove your answer.

Th x wl

A string resting on an elastic foundation is subjected to a uniform load p. The differential equation for the displacement u of this string is


$$\frac{d^2u}{dx^2} - ku = p$$

where k is modulus of the elastic foundation. If the string is fixed at both ends, i.e. if u(0)=u(l)=0,

- (a). determine the displacement curve u(x).
- (b) what is the displacement curve u(x) when $k\to\infty$?

3.(25%)

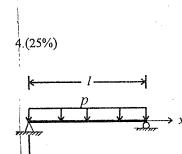
2.(25%)

The mechanical system shown in the figure consists of two particles of masses m_1 and m_2 , which are connected to two linear springs with spring constants k_1 and k_2 respectively. Equations of motion for this system are

$$m_1\ddot{x}_1 + k_1x_1 - k_2(x_2 - x_1) = 0$$

$$m_2\ddot{x}_2 + k_2(x_2 - x_1) = f(t)$$

It is known that $m_1 = m_2 = m$, $k_1 = 3k$, $k_2 = 2k$, and the system is vibrating under no external forces (i.e. f(t) = 0).


- (a). By assuming $x_1 = A \sin(\omega t + \phi)$, and $x_2 = B \sin(\omega t + \phi)$, obtain two natural frequencies of this system as functions of z = k/m.
- (b). Obtain two natural modes (eigenvectors) of this system.
- (c). Obtain solutions $x_1(t)$ and $x_2(t)$ for free vibrations (f(t)=0).

淡江大學八十七學年度碩士班入學考試試題

系别: 機械工程學系

科目: 工程數學

本試題共 2 頁

A simply supported beam is subjected a uniform load p. The deflection curve v(x) satisfies the differential equation

$$\frac{d^4v}{dx^4} = \frac{p}{EI},\tag{1}$$

and the boundary conditions v(0) = v(I) = 0. The constant quantity EI is called flexural rigidity of the beam.

This problem is to be solved by using Fourier series.

- (a) Expand the function f(x) = p/EI (= constant) into a Fourier sine series in the range $0 \le x \le l$.
- (b).Let $v(x) = \sum_{n=1}^{\infty} a_n \sin \frac{n\pi x}{l}$, determine a_n by substituting this

expression into equation (1) and using results in (a).

(c). Is it good to solve this problem by using the Fourier cosine series? Why?