淡江大學 101 學年度碩士班招生考試試題

系別:機械與機電工程學系 科目:材 料 力 學

考試日期:2月26日(星期日)第2節

本試題共 6 大題, 2 頁

Page 1

1. A punch for making holes in steel plates is shown in Fig. 1. Assume that a punch having diameter d = 10 mm is used to punch a hole in an 4-mm plate. If a force P = 100 kN is required to create the hole, what are the average shear stress in the plate and the average compressive stress in the punch? (15%)

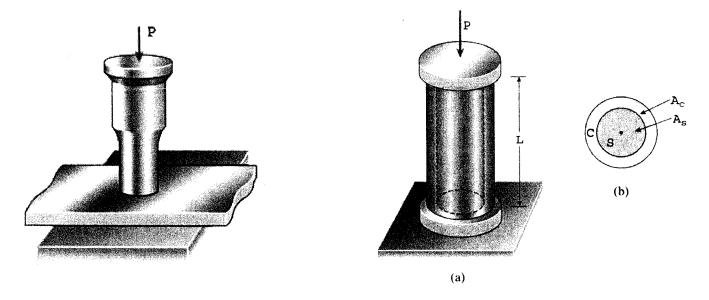


Fig. 1 Fig. 2

- 2. A solid circular steel cylinder S is encased in a hollow circular copper tube C (see Fig. 2). The cylinder and tube are compressed between the rigid plates of a testing machine by compressive forces P = 40 kN. The steel cylinder has diameter $d_S = 45$ mm and modulus of elasticity $E_S = 200$ GPa, the copper tube has diameter $d_C = 60$ mm and modulus $E_C = 120$ GPa, and both parts have length L = 200 mm. Determine the following quantities: (a) the corresponding compressive stresses σ_S and σ_C ; and (b) the shortening δ of the assembly. (15%)
- 3. A solid steel shaft ABC of 50 mm diameter (Fig. 3) is driven at A by a motor that transmits 60kW to the shaft at 10Hz. The gears at B and C drive machinery requiring power equal to 40kW and 20kW, respectively. Compute the maximum shear stress τ_{max} in the shaft and the angle of twist Φ_{AC} between the motor at A and the gear at C. (Use G=80GPa) (20%)

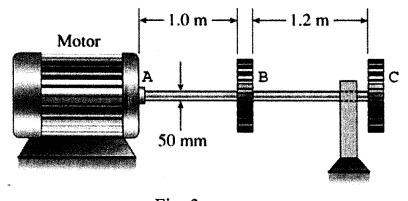


Fig. 3

淡江大學 101 學年度碩士班招生考試試題

45-2

系別:機械與機電工程學系

科目:材料力學

考試日期:2月26日(星期日)第2節

本試題共 6 大題, 2 頁

Page 2

4. The normal strain in the 45° direction on the surface of a circular tube (see Fig. 4) is 880×10^{-6} when the torque T = 750 lb-in. The tube is made of copper alloy with $G = 6.2 \times 10^{6}$ psi. If the outside diameter d_2 of the tube is 0.8 in., what is the inside diameter d_1 ? (15%)

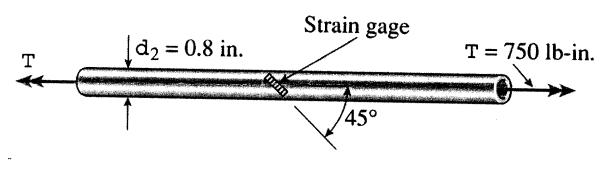
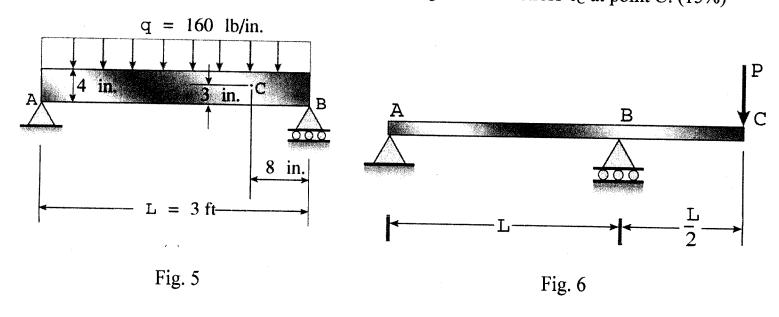



Fig. 4

5. A beam with span L=3 ft shown in Fig. 5 is simply supported at point A and B. The uniform load on the beam (including its own weight) is q=160 lb/in. The cross section of the beam is rectangular with width b=1 in. and height h=4 in. The beam is adequately supported against sideways buckling. Determine the normal stress σ_C and shear stress τ_C at point C. (15%)

6. A simple beam AB with an overhang BC supports a concentrated load P at the end of the overhang (see Fig. 6). The main span of the beam has length L and the overhang has length L/2. Determine the equations of the deflection curve and the deflection δ_C at the end of the overhang. (note: The beam has constant flexural rigidity EI) (20%)