淡江大學99學年度碩士班招生考試試題

50-1

系別:機械與機電工程學系

科目:材料力學

准帶	項目請打「V」
V	計算機
上試題	世 9 頁, 4大

In Fig. 1, a semi-circular rod ACB with circular cross section has the radius of r and flexural rigidity of EI.
Its two ends are supported by hinges as shown. A vertical force P is applied at point C. Please determine: (a) the horizontal reaction force R_h at two supports; (b) the vertical deflection at point C. (25%)

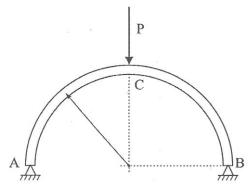


Fig. 1

- 2. In Fig. 2 a rectangular plate has the displacement $\vec{u}(x,y)=u(x,y)\hat{x}+v(x,y)\hat{y}$, where \hat{x} and \hat{y} are the unit vectors along x- and y-axes respectively. If the displacement components has the following forms:
 - (a) $u = \alpha_1 + \beta_1 x$, $v = \alpha_2 + \beta_2 y$
 - (b) $u = \alpha_3 + \beta_3 y$, $v = \alpha_4 + \beta_4 x$
 - (c) $u=\alpha_5x+\beta_5y$, $v=\alpha_6x+\beta_6y$

Determine strains ε_x , ε_y , ε_{xy} , and plot the strain figures at point A for each cases. (25%)

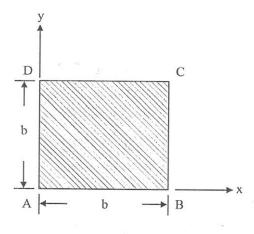
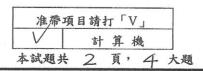
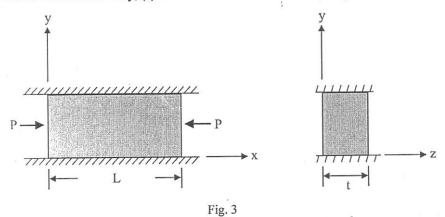



Fig. 2


11

系別:機械與機電工程學系

科目:材料力學

3. A linearly elastic body, with the Young's modulus E and Poisson ratio ν, has the dimension L×h×t as shown in Fig. 3. There are two rigid walls at the top and bottom of the body respectively, which limit the deformation of the body along y direction. A force P is applied in x direction, and therefore the body length is shortened 0.004L. Please determine: (a) the force P; (b) the stress q on the wall surfaces at the top and bottom of the elastic body; (c) the thickness increment Δt. (25%)

4. A balloon has the diameter d of 10 cm and the thickness t of 0.1 mm as shown in Fig. 4. Assume its internal pressure p is 0.2 MPa. Please determine: (a) the membrane stress of the balloon; (b) the principal stress and the maximum shear stress of the outer surface of the balloon; (c) the principal stress and the maximum shear stress of the inner surface of the balloon. (25%)

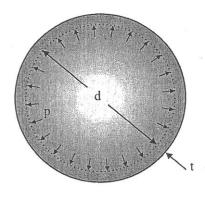


Fig. 4