淡江大學九十學年度碩士班招生考試試題

系別:機械工程學系

科目:流 體 力 學

准帶項目請打「○」否則打「× 」	
計算機	字典
0	×

本試題共 2 頁

- 1. 選擇題每題答對得 4 分,答錯、空白得 0 分不倒扣
- (1) For a flow in the xy plane, the y component of velocity field is given by $v = y^2-2x + 2y$. Determine a possible x component for steady, incompressible

flow. (a) u = 2yx + 2x + f(y)

(b) u = -2yx - 2x + f(y)

(c) u = 2yx + 2x + f(x)

(d) u = -2yx - 2x + f(x)

- (2) Which of the following statement about stream function ψ is <u>not</u> true?
 - (a) ψ is a constant along a streamline
 - (b) the differential of ψ is exact
 - (c) $\psi_2 \psi_1$, depends only on the end points of integration
 - (d) ψ is a path function
- (3) Liquid flow down an inclined plane surface as show, after fully developed flow assumption is applied, which is true?

(a)
$$\frac{\partial u}{\partial t} = 0$$
 (b) $\frac{\partial u}{\partial x} = 0$ (c) $\frac{\partial u}{\partial y} = 0$ (d) $\frac{\partial u}{\partial z} = 0$

- (4) Which is not the restriction for Bernoulli equation
 - (a) steady flow (b) uniform flow (c) frictionless flow (d) incompressible flow
- (5) Which is not the Reynolds number for a pipe?

(a)
$$\frac{\rho \overline{V}D}{\mu}$$
 (b) $\frac{4Q}{\pi vD}$ (c) $\frac{\overline{V}D}{v}$ (d) $\frac{4\dot{m}}{\pi \mu D}$

2. An inclined-tube reservoir manometer is constructed as shown. Analyze the manometer to obtain a general expression for the liquid deflection, L, in the inclined tube, in terms of the applied pressure difference, Δp .

Also obtain a general expression for the manometer sensitivity ($h/\Delta h_e$).

(20%) hint: $p_1-p_2 = \rho_{112Og} \triangle h_e$

淡江大學九十學年度碩士班招生考試試題

系別:機械工程學系

科目:流 體 力 學

准帶項目請打「○」否則打「× 」	
計算機	字典
0	×

本試題共 2 頁

3. The gate shown is 3 m wide and for analysis can be considered mass less. For what depth of water will this rectangular gate be in equilibrium as shown? (20%)

4. Water flow at 0.01 m³/s, through the smooth pipe as shown, assume $P_1 = P_2 = P_{ntm}$, $V_1 \cong 0$, $\overline{V}_2 = \overline{V}$, $\alpha_2 = 1$, $\rho = 999$ kg/m³, $\mu = 1 \times 10^{-3}$ kg/(m · s),

loss coefficient K = 0.5,
$$f = \frac{0.316}{\text{Re}^{0.25}}$$
,

- (a) Please find the friction factor f of the pipe (10%)
- (b) Please find the resevoir depth, d to maintain the flow (10%)

5. A steady jet of water is used to propel a small cart along a horizontal track. Total resistance to motion of the cart assembly is given by $F_D = kU^2$, where k = 0.92 N·s²/m². Evaluate the acceleration of the cart at the instant when its speed is U = 10 m/s. (20%)

