淡江大學八十八學平度碩士班招生考試試題

系别:機械工程學系

科目:流體力學

本試題共 之 頁

1. An inverted 0.1-m-diameter circular cylinder is partially filled with water and held in place as shown in Fig. 1. A force of 20-N is needed to pull the flat plate from the cylinder. Determine the air pressure (kPa) within the cylinder. The plate is not fasten to the cylinder and has negligible mass. (25%)

Note: $\gamma_{H_{20}} = 9.80 \frac{KN}{m^3}$

Fig.1

2. Some animals have learned to take advantage of the Bernoulli effect without having read a fluid mechanics book. For example, a typical prairie dog burrow contains two entrances – a flat front door, and a mounded back door as shown in Fig.2. When the wind blows with velocity V_o across the front door, the average velocity across the back door is greater than V_o because of the mound. Assume the air velocity across the back door is 1.07 V_o . For a wind velocity of 6 m/s, what pressure difference, $p_1 - p_2$, is generated to provide a fresh air flow within the burrow?

Note: 1) Air is assumed to be incompressible.

2) You may negligible gravitational effects.

3)
$$\rho_{air} = 1.23 \frac{Kg}{m^3}$$

Fig.2

淡江大學八十八學年度碩士班招生考試試題

系别:機械工程學系 科目:流體力學

本試題共 2 頁

3.A fluid flows past a circular cylinder of radius a with an upstream speed of V_o as shown in Fig.3. A more advanced theory indicates that if viscous effects are negligible, the velocity of the fluid along the surface of the cylinder is given by $V=2V_o\sin\theta$. Determine the streamline and normal components of acceleration on the surface of the cylinder as a function of $2V_o$, a, and θ .

(25%)

Fig.3

4.A vane directs a horizontal, circular cross-sectional jet of water symmetrically as indicated in Fig.4. The Jet leaves the nozzle with a velocity of 100 ft/s. Determine the x direction component of anchoring force required to confine the speed of the vane to a value of 10 ft/s to the right. The fluid speed magnitude remains constant along the vane surface. (25%)

Note: $\gamma_{H_1O} = 62.4 \frac{lb}{ft^3}$

Fig.4