淡江大學九十學年度碩士班招生考試試題

系別:機械工程學系

科目:熱力學(含熱傳導)

	准帶項目請打「○」否則打「× 」		
i	計算機	字典	
	0	X	

本試題共 2 百

1. Try to explain the following thermodynamic terms:

(15%)

- (1) internal energy
- (2) thermal efficiency
- (3) enthalpy
- (4) back work ratio
- (5) specific flow exergy
- 2. Using temperature-entropy diagram to explain the following thermodynamic cycle:

(15%)

- (1) Air-standard Diesel cycle
- (2) Ericsson cycle
- (3) Stirling cycle
- (4) Air-standard ideal Brayton cycle
- (5) Air-standard dual cycle
- 3. Consider as the system an automobile engine. List the irreversibilities present during operation.

(15%)

4. Answer the following true or false. If false, explain why.

(15%)

- (a) A process that violates the second law of thermodynamics violates the first law of thermodynamics.
- (b)When a net amount of work is done by a closed system undergoing an internally reversible process, a net heat transfer of energy to the system also occurs.
- (c)One corollary of the second law of thermodynamics states that the change in entropy of a closed system must be greater than zero or equal to zero.
- (d)A closed system can experience an increase in entropy only when there is energy transfer by heat to the system during the process.
- (e)Entropy is produced in every internally reversible process of a closed system.

淡江大學九十學年度碩士班招生考試試題

系別:機械工程學系

科目:熱 力 學 (含熱傳導)

准帶項目請打「○」否則打「× 」	
計算機	宇典
0	X

本試題共

頁

5. A power cycle operating between two reservoirs receives energy Q_H by heat transfer from a hot reservoir at T_H=2000K and rejects energy Q_C by heat transfer to a cold reservoir at T_C=400K. For each of the following cases determine whether the cycle operates reversibly, irreversibly, or is impossible:

(20%)

- (a) $Q_H=1100kJ$, $W_{cycle}=900kJ$
- (b) $Q_H = 1000 \text{kJ}$, $Q_C = 200 \text{kJ}$
- (c) $W_{cycle} = 1400 \text{kJ}$, $Q_C = 600 \text{kJ}$
- (d) $\eta = 50\%$

6. During steady-state operation, a parallel-shaft gearbox receives 600kW through the high-speed shaft, but owing to friction and other irreversibilities, delivers 588kW through the low-speed shaft. The gearbox is cooled on its outer surface according to

$$\dot{Q} = -hA(T_b - T_0)$$

where h is the heat transfer coefficient, A is the outer surface area, T_b is the uniform temperature of the outer surface, and T_0 is the uniform temperature of the surroundings away from the immediate vicinity of the gearbox. Evaluate the rate of entropy production $\dot{\sigma}$, in kW/K, for (a)the gearbox as the system and (b)an enlarged system consisting of the gearbox and enough of its surroundings that heat transfer occurs at temperature T_0 . Let h=0.17 kW/m² K, A=1.8m², and T_0 =300K.

(20%)