淡江大學八十九學年度碩士班招生考試試題

系別:機械工程學系 科目:熱力學(含熱傳導)

本試題共]

- 1.Please give definitions of the following: (20%)
- (1) Isothermal process
- (2) Rankine cycle
- (3) Biot number
- (4) Wet-bulb temperature
- (5) Lumped parameter analysis
- (6) Fourier's law of conduction
- (7) Irreversibility
- (8) Thermal contact resistance
- (9) Dew point temperature
- (10) Second law of thermodynamics
- 2.Under what limiting condition do all gases behaves as an ideal gas? (10%)
- 3. Explain in terms of process lines on a PV diagram why boundary work is a path function. (10%)
- 4.A ball falling in a vacuum requires 1 second to reach the ground. Can adiabatic Work interaction be considered during the first 0.5 sec of the ball when the ball is chosen as the system? (10%)
- 5.Explain how heat transfer out of a nozzle will affect the exit velocity for a given inlet state and final pressure. (10%)
- 6. Two large aluminum plates(k=240 W/m K), each 1 cm thick, with 10μm surface roughness are placed in contact under 10⁵ N/m² pressure in air. The contact resistance R₁ is 2.75 x 10⁻⁴ m² K/W. The heat flux is 3x10⁴ W/m²K. Calculate (a) the temperature difference between the outside surfaces. (10%) (b) the temperature drop due to the contact resistance.(5%)
- 7.Obtain an expression for the entropy change as a function of pressure and temperature. (10%)
- 8.An air standard Otto cycle of 48% thermal efficiency has air at 25°C and 1 bar at the beginning of the isentropic compression. Calculate the temperature and pressure of air at the end of the isentropic compression process. (15%)