淡江大學八十八學平度碩士班招生考試試題

系别:機械工程學系

科目: 熱力學

本試題共 2 頁

- 1. Please give definitions of the following: (20%)
 - (1) Adiabatic process
 - (2) Carnot cycle
 - (3) Clapeyron equation
 - (4) Dry-bulb temperature
 - (5) Principle of increase of entropy
 - (6) Gibbs function
 - (7) Inequality of Clausius
 - (8) Joule-Thomson coefficient
 - (9) Polytropic process
 - (10) Third law of thermodynamics
- 2. A water cooled compressor has refrigerant entering as saturated vapor at -30°C. The refrigerant leaves the compressor at 800 kpa. The refrigerant flow rate is 0.9 kg/min and the cooling water results in a heat transfer rate of 140 kJ/min from the refrigerant. The power input to the compressor is 3kW. Determine the exit temperature of the refrigerant. (15%)

For refrigerant: $T = -30^{\circ}$ C, $h_g = 174.076$ kJ/kg

Superheated refrigerant table	e: 800 kpa : Temp. (°C)	h (kJ/kg)	
	40	205.924	
	50	213.290	•
	60	220.558	
	70	227.766	

3. Nitrogen is compressed in a reversible process in a cylinder from 100 kPa, 20°C, to 500 kPa. During the compression process the relation between pressure and volume is $PV^{1.3}$ = constant. Calculate the work and heat transfer per kilogram, and show this process on P- ν and T-s diagrams. (15%) (R = 0.2968 kJ/ kg K)

淡江大學八十八學年度碩士班招生考試試題

系别:機械工程學系

科目:熱力學

本試題共 2 頁

4. Express dS in terms of dT and dP. (10%)

Hint: Maxwell Relation:
$$\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$$

- 5. In a Carnot engine, using 0.05 kg of air as the working fluid, the maximum cycle temperature and pressure are 940 °K and 8.4 MPa respectively. What is the maximum cylinder volume if the minimum temperature during the cycle is 300 °K and the addition of heat to the air is 4.2 kJ? Assume ideal gas behavior. (R = 0.287 kJ/kg K) (15%)
- 6. A coal sample has the following composition:

0.14 moles H₂ / mole fuel

0.27 moles CO / mole fuel

0.03 moles CH₄ / mole fuel

 $0.006 \text{ moles } O_2 / \text{ mole fuel}$

0.509 moles N₂ / mole fuel

0.045 moles CO₂ / mole fuel

Determine the air-fuel ratio if producer gas from this sample is burned with 50 percent excess air. (15%)

Please show the relations of Heat Transfer to Thermodynamics. (10%)