淡江大學九十二學年度碩士班招生考試試題

系別:機械與機電工程學系

科目:動 力 學

准	帶項目請打「○」否則打「× 」
	簡單型計算機
	0

本試題共 / 頁

注意事項:1.這份試卷一共有四題,每題都必須回答。 2.重力加速度 g=9.81m/sec².

It is known that m_A =3kg and m_B =2kg. Determine accelerations a_A , a_B of bodies A and B, and tension force T in the string at the instant shown in the figure (Neglect all friction and the mass of the pulleys).

Link AB has a length a=400mm, and link BC has a length b= 600mm. The circular disk has a radius r=250mm which rolls without sliding on the ground. At the instant shown in the figure, θ =30° and link AB rotates with an angular speed ω_{AB} =0.5rad/sec. Determine velocity v_C of joint C, angular velocity ω_{BC} of link BC, and angular velocity ω_{CD} of the circular disk.

三、(25%)

A moment M=10N·m is applied to the uniform slender rod which is initially at rest. The rod has a mass m=2kg and its center of mass is G.

- 1) Draw free body diagram of this rod.
- 2) By solving equations of motion, obtain:
 - a) Reaction forces R_x and R_y at support A at this instant.
 - b) Angular acceleration α of this rod at this instant.

四、(25%)

A constant force F=4N is applied to a uniform slender rod which is initially at rest in the $\theta=90^{\circ}$ position. The rod has a length $\ell=500$ mm and a mass m=0.3kg. Center of mass of this rod is at G.

- a) Locate instantaneous center of zero velocity of this rod as it is at the position θ =45°.
- b) Determine angular velocity ω of this rod as it passes through the position for which θ =45°. Neglect the mass of the pins and friction in the system.