1．Find expressions for $(\partial \mathrm{S} / \partial \mathrm{V})_{\mathrm{T}},(\partial \mathrm{U} / \text { ə } \mathrm{P})_{\mathrm{T}}$ ，and $(ə \mathrm{H} / \text { ə } \mathrm{P})_{\mathrm{T}}$ for a gas whose belavior can be described by the equation

$$
P(V-n b)=n R T .
$$

where S is the entropy， U is the internal energy， H is the enthalpy， V is the volume， P is the pressure， T is the absolute temperature， R is the gas constant，n is the number of moles，and b is a constant．

2．Consider a steady－flow heat exchanger which operates cocurrently． Heat is transferred from a hot stream，flowing from left to right， to a cold strean flowing in the same direction．The heat exchanger accepts hot stream at 400 K and $1 \mathrm{~mol} / \mathrm{s}$ ，and discharges at 350 K ．The cold stream enters at 300 K ．The minimum temperature difference between the flowing streams is 10 K ．Assume that both streams are ideal gases with $\mathrm{C}_{\mathrm{p}}=3.5 \mathrm{R}$ ． The surroundings temperature is 300 K ．Find the lost work． （Assume negligible kinetic－and potential－energy changes．）

3．The saturation vapor pressure of pure liquid refrigerant $\mathrm{R}-12$ at 40 ${ }^{\circ} \mathrm{C}$ is 9.48 atm ．The virial equation terminated at the second term is an adequate representation of the true volumetric behavior of this subslance．Calculate the fugacity of liquid $\mathrm{R}-12$ at $40^{\circ} \mathrm{C}$ under a pressure of 100 atm nitrogen．（The density of liquid R－12 at these conditions averages $1.25 \mathrm{~g} / \mathrm{cm}^{3}$ and its molar mass is 120.875 g ．The second virial coefficient is $-436.9 \mathrm{~cm}^{3} / \mathrm{mol}$ at 9.48 atm and $40^{\circ} \mathrm{C}$ ．）

