淡江大學99學年度碩士班招生考試試題

系別:化學工程與材料工程學系 科目:化學反應工程

准帶項	目請	打LA		
V	計	算术	幾	
太試題共	1	百,	5	- 大是

- 1. For those ideal flow reactors, (20%)
 - (a) List three types of ideal flow reactors, and describe their operation characteristics.
 - (b) In order to find what a reactor is able to do, what do we need to know?
- For the decomposition A→R, C_{A0}= 1 mol/liter, in a batch reactor conversion is 75% after 1 hour, and is just complete after 2 hours. Find a rate equation to represent these kinetics.
 (20%)
- 3. At 649°C gaseous A decomposes as follows:

$$4A \to B + C$$
, $-r_A = (10 \, hr^{-1})C_A$

What size of plug flow reactor operating at 649° C and 11.4 atm is needed for 75% conversion of 10 mol/hr of A in a 2/3 A - 1/3 inert feed? (20%)

4. The elementary liquid-phase reaction $A + 2B \xrightarrow{k_1} R$ with rate equation

$$-r_{\rm A} = -\frac{1}{2}r_{\rm B} = (12.5\,{\rm liter^2/mol^2\cdot min})C_{\rm A}C_{\rm B}^2 - (1.5\,{\rm min^{-1}})C_{\rm R}, \qquad \left[\frac{\rm mol}{\rm liter\cdot min}\right]$$

is to take place in a 6-liter steady-state ideal mixed flow reactor. Two feed streams, one containing 2.8 mol A/liter and the other containing 1.6 mol B/liter, are to be introduced at equal volumetric flow rates into the reactor, and 75% conversion of limiting component is desired. What should be the flow rate in liter/min of each stream? (20%)

5. For the parallel reactions $A+B \xrightarrow{k_1} D$ and $A+B \xrightarrow{k_2} U$, where D is a desired product while U is an unwanted product. The rate equations are

$$r_D = k_1 C_A^{\alpha_1} C_B^{\beta_1}$$

$$r_U = k_2 C_A^{\alpha_2} C_B^{\beta_2}$$

Consider all possible combinations of reaction orders and select the reaction scheme that will maximize the rate selectivity parameter for desired product. (20%)