淡江大學 98 學年度碩士班招生考試試題

65

系別: 化學工程與材料工程學系

科目: 化學反應工程

- 1. A CSTR is used to decompose a dilute solution of A. The decomposition is irreversible and first order, with reaction rate constant of 3.45 h⁻¹. The reactor volume is 10 m³. What flow rate of feed solution be treated by this reactor if 95% decomposition is required? (15 $\frac{6}{2}$)
- 2. The elementary gas-phase reaction $A \rightarrow B + 2C$ is carried out isothermally in a flow reactor with no pressure drop. The specific reaction rate at 50°C is 10^{-4} min⁻¹ and the activation energy is 85 kJ/mol. Pure A enters the reactor at 10 atm and 127°C and a molar flow rate of 2.5 mol/min. Calculate the reactor volume and space time to achieve 90% conversion in a PFR. (20 $\frac{1}{2}$)
- 3. The liquid-phase irreversible reaction $A \to B + C$ is carried out in a CSTR. To learn the rate law the volumetric flow rate, ν_0 , is varied and the effluent concentrations of species A recorded as a function of the space time τ . Pure A enters the reactor at a concentration of 2 mol/dm³. Steady-state conditions exist when the measurements are recorded.

Run	1	2 .	3	4	5
τ (min)	15	38	100	300	1200
C _A (mol/dm³)	1.5	1.25	1.0	0.75	0.5

Determine the reaction order and specific reaction rate. (20分)

4. A and B react with each others as following elementary reactions: (20 5)

$$2A \xrightarrow{k_1} R$$

$$A + B \xrightarrow{k_2} S$$

$$2B \xrightarrow{k_3} T$$

Find what ratio of A to B should be in a CSTR so as to maximize the fractional yield of desired product S.

5. The mechanism of a homogeneous gas phase reaction $H_2 + Br_2 \iff 2HBr$ is suggested as follows:

Initiation:

$$Br_2 \xrightarrow{k_1} 2Br^{\bullet}$$

Propagation:

$$Br^{\bullet} + H_2 \xrightarrow{k_2} H^{\bullet} + HBr$$

$$H^{\bullet} + Br_2 \xrightarrow{k_1} Br^{\bullet} + HBr$$

$$H \bullet + HBr \xrightarrow{k_1} H_2 + Br \bullet$$

Termination:

$$2Br^{\bullet} \xrightarrow{k_3} Br_2$$

Determine the overall rate expression for the rate of formation of HBr. (25 分)