淡江大學 97 學年度碩士班招生考試試題

系別:化學工程與材料工程學系 科目:化學反應工程

准带項目請打「V」

✓ 簡單型計算機

本試題共 / 頁, 4 大題

Problem 1

Consider the elementary liquid-phase reaction, $A+B\to P$, with reaction rate constant k=1 m³/(kmole-s). Suppose inlet concentration of feed, $C_{A,in}=C_{B,in}=10$ kmloe/m³. It is desired to achieve an output concentration $C_{A,out}=1$ kmloe/m³.

(a) Find the mean residence time needed to achieve this value using a PFR. (15pt)

(b) Repeat (a) assuming that the reaction occurs in a CSTR. (15pt)

Problem 2 (30pt)

A liquid-phase reaction, $A + water \rightarrow C$, is carried out in a well-mixed batch reactor. In the reactor, 500 ml of a 2 M solution (2 kmloe/m³) of A in water is mixed with 500 ml of water. The temperature was maintained at 50 °C. The concentration of product C, C_C , is recorded as a function of time as follows:

Time	Cc				
(min)	(kmloe/m³)				
0	0				
0.5	0.145				
1.0	0.270				
1.5	0.376				

Using the data shown above, determine the rate constant k at 50 °C. The water concentration can be assumed to be constant, and the reaction is first-order in component A.

Hint: Natural logarithms of numbers

n 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8								
	n	1.5 1.6 1.7 1.8 1.9	1.4	1.3	1.2	1.1	1.0	n
ln(n) 0.0 0.0953 0.1823 0.2624 0.3365 0.4055 0.4700 0.5306 0.5878 0.	ln(n)	.4055 0.4700 0.5306 0.5878 0.6419	0.3365	0.2624	0.1823	0.0953	0.0	ln(n)

Problem 3

The irreversible first-order gas-phase reaction, $A \to C$, is carried out isothermally in a fluidized-catalytic CSTR containing 50 kg of catalyst. There is no pressure drop in the CSTR, and a 50% conversion is obtained for pure A entering at pressure of 20 atm.

- (a) The same reaction is carried out isothermally in a packed-bed catalytic reactor (PBR) containing 50 kg of catalyst, and pure A enters the PBR at pressure of 20 atm. Assuming there is no pressure drop along the packed-bed, what is the conversion exiting the PBR? (20pt)
- (b) Repeat (a) assuming the pressure drop along the PBR follows $P = P_{in}(1 0.02W)^{1/2}$, where P_{in} is the inlet pressure and W is the catalyst weight in kg. (10pt)

Hint: $\exp(2/3) = 1.948$, $\exp(1) = 2.718$, $\exp(3/2) = 4.482$

Problem 4 (10pt)

請將第三題題目翻譯為中文