淡江大學 95 學年度碩士班招生考試試題

系別:化學工程與材料工程學系

科目:化學反應工程

准帶項目請打「V」		
\checkmark	簡單型計算機	
	本試題共 /	 1

- 1. Derive the differential and integral forms of the reactor design equations for the batch reactor, CSTR and PFR. You might get an algebraic form of equation for CSTR: Use the nomenclatures: N_j as the number of moles of species j in the reactor, r_j as the rate of formation of species j, V as the reactor volume, F_{j0} as the molar flow rate of species j into the reactor, F_j as the molar flow rate of species j into the reactor, F_j as the molar flow rate of species j out of the reactor, t as the time. (10%)
- 2. The elementary irreversible aqueous-phase reaction $A + B \rightarrow C + D$ is carried out isothermally as follows. Equal volumetric flow rates of two liquid streams are introduced into a 4-liter CSTR. One stream contains 0.020 mol/liter of A, the other 1.400 mol/liter of B. Some C is formed in the CSTR, its concentration being 0.002 mol/liter. The exit stream from the CSTR is then passed through a 16-liter PFR. Find the concentration of C at the exit of the PFR as well as the fraction of initial Athat has been converted in the system. Hint: you may assume that the concentration of B is constant since the amount of B is excess through the whole process. (30%)
- 3. A reversible gas-phase elementary reaction $2A \leftrightarrow B$ is carried out at constant temperature. The feed consists of pure A at 340 K and 2 atm. The concentration equilibrium constant at 340 K is 10 dm³/mol.
 - (a) Calculate the equilibrium conversion of A in a constant-volume batch reactor. (15%)
 - (b) Calculate the equilibrium conversion of A in a flow reactor with no pressure drop. (15%)

4. Consider a mixed-order elementary consecutive scheme

$$A \xrightarrow{k_1} B$$
$$A + B \xrightarrow{k_1} C$$

in an isothermal constant-volume batch reactor. The initial concentration of A is $C_{\Lambda 0}$ and B and C are not present in the reactor initially.

(a) Derive a relationship that will express $C_{\rm B}$ as a function of $C_{\rm A}$. (15%)

(b) Derive a relationship that will express $C_{\rm C}$ as a function of $C_{\rm B}$. (15%)

11