本は題雙面印刷

淡江大學九十三學年度碩士班招生考試試題

系別: 化學工程與材料工程學系

科目:化學反應工程 50%

准帶工	頁目請打「○」否則打「x
	○ 簡單型計算機

本試題共 / 頁

- 1. At 500 K, the rate of a reaction is ten times the rate at 400 K. Find the activation energy of this reaction:
- (a) From Arrhenius law. (5 %) $k = Ae^{-\frac{E}{RT}}$
- (b) From collision theory. (5 %) $k = A\sqrt{T}e^{-\frac{E}{RT}}$
- (c) What is the percentage difference in rate of reaction at 600 K predicted by these two methods? (10 %)
- 2. Consider the classic first-order sequence

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

in an isothermal batch reactor.

- (a) Derive a relationship that will express B as a function of A. (15 %)
- (b) Derive the reaction time for which B is a maximum. (15 %)

淡江大學九十三學年度碩士班招生考試試題

系別:化學工程與材料工程學系 科目:化工熱力學 50%

准帶項目	清打「	OJ	否則打	ГX	J
0	簡單	型計	算機		

本試題共 頁

- 1. A center power plant, rated at 600000 kW, generates steam at 580K and discards heat to a river at 290K. If the thermal efficiency of the plant is 60 % of the maximum possible value, how much heat is rejected to the river at rated power? (10 points)
- 2. The following vapor pressure data is available for solid and liquid hydrogen cyanide.

T (K)	245	250	255	T (K)	270	280	290	300
P°, solid	53.4	75.8	106.2	Po, liquid	230.6	359.0	542.1	796.6
(mmHg)				(mmHg)				<u> </u>

With the help of Clausius-Clapeyron equation and assume transition heat is independent of temperature, please calculate (1) the heat of vaporization (cal/mol), (2) the heat of fusion (cal/mol), (3) the triple point (T=? K, P=? mmHg), (4) the normal boiling point, and (5) the entropy of vaporization at the normal boiling point (cal/mol-K). (20 points)

3. The standard Gibbs energy of reaction on the production of methanol from 1 mole of CO_(g) and 2 moles of $H_{2(g)}$ are as follows: $CO(g) + 2H_{2(g)} \rightarrow CH_3OH_{(g)}$

T (K)	500	600	700	
ΔG° (cal)	5082	10835	16685	

(a) What is the equilibrium conversion of CO at 600K and 1 bar? (b) If the heat of reaction ΔH^{o} is independent of temperature, calculate the heat of reaction ΔH^{o} (cal) and entropy of reaction ΔS° at 600K and 1 bar (cal/K). (20 points)