淡江大學八十八學平度碩士班招生考試試題

系别:化學工程學系

科目:工程數學

本試題共

- ** No credits for using the method not assigned. **
- 15% Solve

$$y" + y = \cos(x)\sin(x)$$

15% 2. Transfom

$$y'' + x^4y = 0$$

into a Bessel equation and write the general solution in terms of Bessel functions.

Use the Laplace transform to solve the system of differential equations

$$x' = 2x + y$$

$$v' = v + 6e^{-t}$$

$$y' = y + 6e^{-t}$$
 $x(0) = y(0) = z(0) = 0$

$$z' = 2\sin(t) + x$$

25% Solve the boundary value problem

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial v}{\partial r}\right) = \frac{\partial^2 v}{\partial r^2}$$

$$v(1,t) = 0$$

$$v(r,0) = f(r)$$

$$\frac{\partial v}{\partial t}(r,0) = g(r)$$

by separation of variables method.

Forced convection heat transfer in a boundary layer with large Prandtl number may be described by the dimensionless equation

$$x\frac{\partial\theta}{\partial z} = \frac{1}{Pe}\frac{\partial^2\theta}{\partial x^2}$$

$$\theta(0,z)=1$$

$$\theta(\infty, z) = 0$$

$$\theta(x,0) = 0$$

$$(Pe \equiv Peclet no.)$$

Use the combination of variables method to solve the above boundary value problem.