淡江大學 104 學年度碩士班招生考試試題

系別:化學工程與材料工程學系B組 科目:物理化學

考試日期:3月8日(星期日)第2節

本試題共 大題,

1 頁

- 1. (a) One mole of an ideal gas originally at 300 K and 1 bar is heated at constant pressure to a temperature of 400 K. The gas has a constant pressure heat capacity (C_p) of 30 J/mol·K. Calculate the changes in the internal energy (ΔU) , enthalpy (ΔH) , and entropy (ΔS) , and the heat (Q) and work (W) for this process. (gas constant, R = 8.314 J/mol·K) (20%)
 - (b) Then the system is compressed isothermally to a volume equal to its initial volume. Calculate ΔU , ΔH , ΔS , Q, and W for this process. (15%)
- 2. The Beer-Lambert law states that $A = \log(1/T) = \varepsilon cd$, where A is the absorbance, T is the transmittance, ε is the molar absorption coefficient, c is the concentration, and d is the light path. An aqueous solution of a compound (molar mass 500 g/mol), at a concentration of 50 mg/L, gave an absorbance of 1.0 with a light path of 1 cm.
 - (a) Calculate the molar absorption coefficient. (5%)
 - (b) What would be the absorbance and the percentage of transmittance of a 10⁻⁵ M solution? (10%)
- 3. (a) There is a relationship between the energy of a photon and the wavelength of the light (λ) given by the equation: $E = hc/\lambda$. Estimate the energy (eV) of a photon that has the wavelength of 328 nm. (Plank constant: 6.626×10^{-34} J·s or 4.136×10^{-15} eV·s; the speed of light: 3×10^8 m/s) (5%)
 - (b) An electron has a mass (m) of 9.11×10^{-31} kg and a charge of 1.602×10^{-19} C. Calculate the kinetic energy $(mu^2/2)$ and the de Broglie wavelength $(\lambda = h/mu)$ of an electron that has been accelerated by a potential of 100 V. (10%)
- 4. A compound adsorbed on graphite is found to obey the Langmuir isotherm: $\theta = KP_A/(1+KP_A)$, where θ is the fraction of the surface covered by adsorbed A ($\theta = 1$ when the surface is saturated) and K is the equilibrium constant. At a pressure of 1 Torr the adsorbed molecules on a sample of graphite was found to be 4 mm³ at STP (0 °C, 1 atm); at 3 Torr it was 8 mm³. Calculate the equilibrium constant and the volume (x mm³ at STP) of this compound adsorbed when the graphite surface is saturated. (10%)
- 5. An aqueous solution of gold (III) nitrite, Au(NO₃)₃, was electrolyzed with a current of 0.05 A until 0.197 g of Au (atomic weight 197 g/mol) had been deposited at the cathode. The reactions are: 3e⁻ + Au³⁺ → Au and 2H₂O → O₂ + 4H⁺ + 4e⁻ Calculate (a) the quantity of electricity Q passed (electric charge, SI unit: C), (b) the duration (time) of the experiment, and (c) the volume of O₂ (at STP) liberated at the anode. The Faraday constant F is equal to 96485 C/mol. (15%)
- 6. A second-order reaction in solution has a rate constant (k) of 10^{-4} L/mol·s at 27 °C and of 5×10^{-4} L/mol·s at 67 °C. Calculate the activation energy (E), assuming the Arrhenius equation to apply. (Arrhenius equation: $k = Ae^{-E/RT}$) (10%)